AGILE SOFTWARE DEVELOPMENT

mn )

Introduction in
Agile Methodologies



Course content

Agile Methodologies - Overview

Scrum

Extreme Programming

Kanban

Lean Product Development

Other Methodologies: Crystal, AUP, DAD
The future of Agile



Seminar content

Agile Problem Solving
Agile Mindset X
Agile Estimation

Team Organization

Limiting Work in Progress



ANALYSIS

CODING

‘ ACCEPTANCE

A

L — et Validation
Planning Traceability Reporting
=) User 1 DS Validaton _ _ _ _ _ _ _ _ _ _ _ _ _ User Acceptance
H Requirements Traceability Testing
\erification
Traceability
_______ System Validation System
-=p Requirements APt Traceability g R Testing
L
- A\ y 4
Verification Technical vafon Installation
¢ ability ~ ~ " Qualification
'
; A\ y 4
L}
' i Validation e
e r e e Detailed Traceabilit nit a
Desig 4 "I - ntegrationTesting
System Configuration
and Development

1.Determine
objectives

Review

y Cumulative cost

Progress 2. Identify and

— |

L

resolve risks

4. Plan the Release
next iteration

Im plementation

3. Development
and Test




uct

productlmt,y mani ﬁ,sm stakeholders

hard impact ACkIvIEy
szvlt-ng. HdEtaIIEd resuled manufacturing o EPEC:[ Cat:lDI'lE. cliznt .
plan
hel
nlftgn}? e ; e 1 . m ent Valuable

techniques larman % sices ™ o2y 2 dm,lgpm S S = DIOCESS Tt
lleC}'CIE::lmUSEH‘ prmCIP es * fivzt frequently eam processes Q) knomng‘“i“ﬂ‘

maonth
[Fll'E‘:cIEI.l']Dn
features U.Slng aglhty

wwhm
throupghour
O
idence
iterarions
]
i

ev
O
g8,
o1

difficult

new é'
“-'““Lapdpmch ﬁocugem?tmg&m;: daving g P g : tEnavi-Evscr
esign pide g e E .!?T::w
5 ggmgmf icant 00 ™
3 respend L may

common 5 rate g v :1150 busme:ss P er 34 3—[ give workfﬂg people O
= 2w Instead g megress D
cluznts E projects I'-.:C T D—I

i arly "D waterfall
werks discouran jid U 5 found LDﬂ[lI‘.ILlDLlS i S}TStEI'.I'.I.
,qI:D“BbZII?IIEID £ E a_ng;ng . rem:ng 4—’3I
) systems E (=] lterative 0
£ £ O always
= ]
-
=



User —= Customer <«

/ \\A - Desk/ /'\\Engineering

Mngt

But, that's not Requwements / / \,

really what | Estimates «__ Ene, Teai
wanted! Customer Rep

/ — ENng. Team 2
Deliver Product | i/
Backlog Architecture
/ / +~— Design
Sprint \ Story/Spec
Backlog Sprmt Release

Demo

\ thlmates Planmng

Sprlnt Planning——"" Development

Integratlon onltor/Scrum

- The Battle for Success (ITCamp 2014)



Agile Manifesto (2001)

Agile Project

Bireme Management
ogramming e

e X P ool —
&h Gamima \ -
[ Kent Beck ] James Grenning ; [Robert & N

i

Clean Code

Mike Beedle Jim Highsmith
Arie van Bennekum [ Andrew Hunt } [ If:lvse dl\l/lv\e;lalt())é‘r
listair Cockburrﬂ Ron Jettries [ Jeff Sutherland }
Ward Cunningham Jon Kern D Thomas
[Martin Fowler] Brian Marick e

Reracrorive
IMPROVING THE DESIGN

Model Driven
Architecture

Crystal
= Scrum



Agile Manifesto
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions
over processes and tools

Working software
over comprehensive documentation

Customer collaboration
over contract negotiation

Responding to change
over following a plan



Principle 1

Our highest priority is to
satisfy the customer through

delivery of




Principle 2

even late in development.
Agile processes harness

change for the customer's
competitive advantage




Principle 3

DELIVERIES

e e

versions ,
from a couple of weeks to a 2/
couple of months,
with a preference to the

o DELIVERIES
h




Principle 4

and
developers
must daily
throughout the project.




Principle 5

Build projects around

Give them
and support
they need and
to get the job done.




Principle 6

The most
and
method of conveying
information to and within a
development team is







Principle 7

are the primary measure of




Principle 8

Agile processes promote

The sponsors, developers
and users should be able
to maintain a

indefinitely.




Principle 9

enhances agility.




Principle 10

— the art of maximizing the
amount of work not done —
is essential.




Principle 11

The best architectures,
requirements, and designs
emerge from




Principle 12 2 W

reports meehings
Cetebrat-¢ 'd

SUCCegs O X L E S S
N
0& Y
3 »

&

detaited

» \ y
< \ :
" B | - MORE \ &=

W&
: \(\40

the team on how

to become more effective,

then its
behavior accordingly.




Agile manifesto

The best architectures,
requirements, and designs

Build projects around motivated individuals. emerge from self-organizing Deliver working deliverables frequently, from a
Give them the environment and support they teams. couple of weeks to a couple of months, with a
need and trust them to get the job done. preference to the shorter timescale.
Motivated Self-organizing Frequent

individuals

teams \ deliveries Working deliverables are

Progress by the primary measure of
deliverables

The most efficient and effective
method of conveying

. . I ) Face-to-face / progress.
information to and within a team is conversations
face-to-face conversation. \ Individuals and Working
interactions deliverables Continuous attention to

Technical

technical excellence and good
excellence

Business people and team ; . -
peop Working design enhances agility.

members must work together together

daily throughout the project. \ Customer Responding to

change

collaboration

At regular intervals, the team

Our highest priority is to e Continuous
satisfy the customer fl‘;"st:f::r improvement  reflects on how to become more
through early and continuous Sustainable Changing — : ‘effectlve,' then tune.s and adjusts
delivery of valuable deliverables. \_/ pace | requirements \ implictty its behavior accordingly.

Agile processes promote sustainable work. .
Welcome changing
The sponsors, team members, and users . .
L requirements, even late in the
should be able to maintain a constant pace . .
project. Agile processes harness

indefinitely. change for the customer's
competitive advantage.

Simplicity - the art of maximizing the
amount of work not done - is essential.



AGILE SOFTWARE DEVELOPMENT

mn )

Agile
VS

Waterfall Methodologies



O
r
4,
>

o,

picture

Maintenance

Verification

Implementation




WATERFALL AGILE

——pari

Fixed Requirements Resources Time

Value
Driven

Plan
Driven

Estimated] Resources Time Scope






m Incomplete specifications




Controlling Change

Project’s change
control mechanisms

<&
=><:

il




Reacting to Change




J]

Verification

Maintenance

Planning

Your plan

g

Il

Reality




Incremental

Jeff Patton: http://www.agileproductdesign.com/blog/dont_know_what_i_want.html/



-
: e .
&p P 1 WU S .
v . v X b i : - ' 7S !
e E, ' - 3 ]
. \ - LA
-~ W £ - T Y, E‘ f,
N i ' 9 . ‘ id g ~ )
8% A 4 .- - ,'&. -~
y . -
¥, ’ -e -
o
.
—~ "o
- ' o
.
.

L S e # i

- Sy "Tahitians at rest" PauIrGauguin

. sa



yoeouidde jeuonyipet | yoeoudde ajiby



Iterative & Incremental




Requirements

J]

Design

J

Implementation

J)

Verification

1)

Maintenance

Communication




Hierarchical Organization

Superior Superior Superior

]

Role Role

Work flow

Communication

Subordinate Subordinate Subordinate



Cooperative Organization

Wo rII< Iﬂow
a Inld

communication




Verification

Learning

Seﬂ facirl"'a-l'c& Ej (@covrasas

by @Ccﬁky NDavidson



The Backwards Brain Bicycle



Verification

Value vs Risk

Waterfall

Agile




OCT06 <SELLBY
0CT06 <SELLBY 0CT06 <SELLBY W
7 e MILK
: : VITAMIN D ADDED

MILK MILK
VITAMIN D ADDED VITAMIN D ADDED

MILK MILK

VITAMIN D ADDED VITAMIN D ADDED
GRADE A GRADE A
HOMOGENIZED PASTEURIZED HOMOGENIZED PASTEURIZED
NETBFLOZ 237 mL NETBFLOZ 237 mL

MILK

GRADE A
wrmr! Er'n!n‘n&n wnmr! Er'n!t?n&n HOMOGENIZED

PASTEURIZED

MILK MILK

VITAMIN D ADDED VITAMIN D ADDED
GRADE A GRADE A
HOMOGENIZED PASTEURIZED HOMOGENIZED PASTEURIZED

NETEFLOZ 23T ml NETEFLOZ 23T mlL NET 32 FL OZ (1QT) 946 mL

Software is cheapest in Milk is cheapest in
lots of SMALL cartons BIG cartons



Reguirements

5

Design

—J

Implementation

b

Verification

—I

Maintenance

Definition







AGILE SOFTWARE DEVELOPMENT

1 _/ 2

Hybrid Approaches
Scrum Methodology. Roles



DEVELOPMENT APPROACH USED

- AT%

PREDICTIVE

o)
7% ——
OTHER
APPROACHES

23%

HYBRID (AGILE/PREDICTIVE
APPROACHES)

23%

AGILE

Source; PMI 2018 Pulse of The Profession

WWW.VITALITYCHICAGO.COM



Levels of Software Method
Understanding and Use

Level | Characteristics

3 Able to revise a method (break its rules) to fit an unprecedented new situation
2 Able to tailor a method to fit a precedented new situation
1A With training, able to perform discretionary method steps (e.g., sizing stories to fit increments,

composing patterns, compound refactoring, complex COTS integration). With experience can
become Level 2.

1B With training, able to perform procedural method steps (e.g. coding a simple method, simple
refactoring, following coding standards and CM procedures, running tests). With experience can
master some Level 1A skKills.

-1 May have technical skills, but unable or unwilling to collaborate or follow shared methods.

From “Agile Software Development”, A. Cockburn (Addison-Wesley, 2002)



Factor

Agility Considerations

Discipline Considerations

Size

Well-matched to small products and
teams. Reliance on tacit knowledge
limits scalability.

Methods evolved to handle large products and
teams. Hard to tailor down to small projects.

Criticality

Untested on safety-critical products.
Potential difficultiies with simple
design and lack of documentation.

Methods evolved to handle highly critical products.
Hard to tailor down to low-criticality products.

Dynamism

Simple design and continuous
refactoring are excellent for highly
dynamic environments, but a source
of potentially expensive rework for
highly stable environments.

Detailed plans and Big Design Up Front excellent for
highly stable environment, but a source of expensive
rework for highly dynamic environments.

Personnel

Requires continuous presence of a
critical mass of scarce Cockburn
Level 2 or 3 experts. Risky to use
non-agile Level 1B people.

Needs a critical mass of scarce Cockburn Level 2
and 3 experts during project definition, but can work
with fewer later in the project—unless the
environment is highly dynamic. Can usually
accommodate some Level 1B people.

Culture

Thrives in a culture where people feel
comfortable and empowered by
having many degrees of freedom.

Thrives in a culture where people feel comfortable
and empowered by having their roles defined by
clear policies and procedures.

from "Balancing Agility and Discipline", Barry Boehm & Richard Turner




Personnel

(% Level 1B)

40
30
20
10
Criticality
(Loss due to impact of defects) ;, ¥ Single
9% i Essential 0

nas—- .
DISC[EHOI‘IEII}I‘
funds comifort

10
30
100
300

Size
(Number of personnel)

(% Level 2 & 3)

15

20

25

30

35

. Dynamism
5 {% Requirements-change/month)
10
30
50
30
Yo Predictive
Culture

(% Thriving on chaos)

from "Balancing Agility and Discipline", Barry Boehm & Richard Turner



Personnel
(% Level 1B) (% Level 2&3)

40 T 15

Criticality

(Loss due to impact of defects) Dynamism

(% Requirements-change/month)

Mary
Lives Single
Life

Discretionary
Funds Comfort

300

Size
(# of personnel) Culture

(% thriving on chaos vs. order)



“We can never direct a living
system, only disturb it and

wait to see the response... Christopher Avery

We can’t know all the forces shaping an
organization we wish to change, so all we can do is
provoke the system in some way be experimenting
with a force we think might have some impact, then
watch to see what happens.”






Inputs From End-Users,
Customers, Team and other

Stakeholders J o I o .
Wi L
P Tl - e Tl

Refinement
Product Owner Team

Sprint Review

Team Selects How
Much To Commit
To Do By The End
Of The Sprint

Potentially Shippable
Product Increment

Sprint Planning Sprint

Meeting Backlog 'mi"i"i‘ri'tim

Product
Backlog Retrospective



SCRUM

.... hits an ideal balance between

concrete abstract
ractices rinciples




SCRUM

concrete ‘ abstract
practices principles



SCRUM

[ learn fast? }

7
is a lightweight framework designed to help

}/ small, close-knit teams of people

develop complex products.

remember
Cynefin framework




Scrum Pillars

The pillars of Scrum

— Transparency
— Inspection
— Adaptation

They refer to

— Process
— Results




Scrum Roles

4»







Scrum Roles

Business objectives
Project objectives

Product Owner

holds the vision for the product
represents the interests of the business
represents the customers
owns the product backlog
orders (prioritizes) the items in the product backlog
creates acceptance criteria for the backlog items

is available to answer the team members” questions

Features
VS.
User Stories




Scrum Roles

Product Owner w
usiNness-

Savvy
Avallable
S Empowered
Communicative




Scrum Roles

Scrum Master

* the team’s good shepherd
* coach

* guardian
» facilitator is not a manager!
* scrum expert ©

* impediment bulldozer



Scrum Master + PM

Agile project
management
Scrum Project
Master Manager
Processes Agile Values People Product

delivery



Scrum Master = Servant Leader

Conceptualization

Empathy

Listening

Attributes

Awareness

Persuasion



Scrum Master Encourages

Blameless
observations
Failing &
learning %

fast : :
Sincerity b



Scrum Master Discourages

CYA
Retrenching

Fear of

failure .
Defensiveness -



Scrum Roles

Team Member

* responsible for completing user stories to
incrementally increase the value of the product

* self-organizes to get all of the necessary work
done

* creates and owns the estimates

* owns the “ how to do the work” decisions

* avoids siloed “not my job” thinking



The team responsibilities

Estimates Commit

Organize
themselves

Quality Deliver



The team motivation

Feedback

Recognize

performance Motivation Persuade

Respect



Product

Development
Owner

team

o
JE

Scrum
Master o#

y ol

Illustration by Martin Leon Barreto




AGILE SOFTWARE DEVELOPMENT

mn )

Scrum Methodology:
Artifacts



Scrum Artifacts

the tools Scrum practitioners use
to make the process visible



Scrum Artifacts

The Product Backlog

 the cumulative list of desired deliverables for
the product
* includes:
* features
* bug fixes
* documentation changes
* etc (anything meaningful & valuable to
produce)



Scrum Artifacts

The Product Backlog

* for each deliverable from backlog we should
know:
* Who is it for?
* What needs to be built?
* Why we should do it?
* How much work requires to implement?
* Acceptance criteria
* Priority




Scrum Artifacts

The Iteration Backlog

* (iteration vs sprint )
* all deliverables that the team has committed to
deliver this iteration
* Deliverable -unit of value /team
* Task - unit of work / person (team member)



Scrum Artifacts

No changes during a Sprint!

Plan sprint durations around how long you can commit to
keeping change out of the sprint!



Scrum Artifacts

Product Increment

* Sum of all the Product Backlog items completed
during a sprint and all previous sprints

* At the end of a sprint, the new Increment must
be Done



Task Board

® Liza Wood

socketsandlightbulbs.com

PROJECT/TEAM: Awesome Scrimy Team

In Progress In Review/QA Downel

To-Do

Backlog

1 Rangs sasm

z Buoas sesn

< Runs 1sm

+ Ruans sesn

& Ruors ssn

2 Auns s3sm

£ Puors 4




Scrum Artifacts

oefiratr
Detinition of Ready

The Definition of Ready (DoR) sets out the criteria for the
stories needed to make the Sprint succeed

The DoR is drawn up by the Development Team, cooperating
with the Product Owner

The Development Team determines whether Product Backlog
items meet the DoR

The PO respects the DoR. That means that a Product Backlog
item is only included in a Sprint if it meets the DoR.



Scrum Artifacts

Detinition of Ready

Example:
Story Statement
Specification by Example
Flow chart, if needed
Use Case, if Acceptance Criteria missing

Wireframe, if needed, delivered
UX [mock-up] if needed, delivered



% Scrum Artifacts

izh  Definition of Done

* “when the code has been written” (programmer)

 “all of the tests have passed” (tester)

* “it’s been loaded onto the production servers”
(operations)

* “we can now sell it to customers” (business
person)

 Each team creates its own “definition of done”



% Scrum Artifacts

izh Definition of Done

- Is a crucial tool for making sure that the developed
product is satisfying stakeholders expectations

= The team is only finished with a Sprint Backlog item
once it meets the DoD

= The DoD is drawn up by the Development Team
= A Definition of Done should exist for:

B User stories

B Releases

B Final project deliverables



Scrum Artifacts

Burndown Charts

Iteration 1 Burn Down

20

21

14

Remaining Effor!

Ahead of Schedule

0 ) 10 15 20
fteration Timeline (days)

B ldeal Remaining Effort [l Actual Remaining Effort



Scrum Artifacts
Burn-up Charts

400

350

300

250

200

150

100

50

Kick-off Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7 Sprint 8 Sprint 9 Sprint
10

=@ Backlog ++®+:|deal =—@uActual



Scrum Artifacts

Burndown Charts

Story
points

70 Shows increase from
- ariginal scope or estimatas

Shows
decrease in
sCcope

|

|
L

=

0 1 2 3 4 5 & 7 8 9
Iterations



Sequential vs Overlapping Development

Rather than doing all
of one thing at a time ...Scrum teams do a little of

everything all the time

Source: “The New New Product Development Game”
Takeuki, Nonaka, HBR, Jan 1986



"=}
o
o
=
o
°
=]
=
L]

Burndown Chart

WE LIKE TO
CALL IT
"JUST IN TIME"

Story Points

WATERFALL IS BACK



Next: Scrum Ceremonies

Daily Schedule for a One-Week Sprint

Ymv TUESOAY WERESORY TRARSORY FRIDAY
TAVO-UP SThvo-ue STANO-UP STAVOUP
1 s\gm, | 15 min. 15 min. Dm-‘_
PlAM e
2 s,
*
SPRVT geview
V2 R
4‘ RETROSPEL TIVE
m\( % mirutes
L | AR




AGILE SOFTWARE DEVELOPMENT

mn )

Scrum Methodology:
Ceremonies



crum Ceremonies

Inputs From End-Users,
Customers, Team and other

Statehoer 0 -mh. I
1y T i

e o o o ‘
o o Scrum Master Dal'Y'SCmm e e,
- Product Meeting and M.
fm w Backlog Artifacts Update w
Refinement

Product Owner Team Sprint Review

Team Selects How

Much To Commit

To Do By The End
Of The Sprint

Potentially Shippable
Product Increment

o wn
I

_ Sprint Planning Sprint ® o o o
Meeting Backlog ’n‘wwwww'ﬂ‘

Product
Backlog Retrospective



Scrum Ceremonies

1. Iteration/Sprint Planning
2. Daily Scrum

3. Iteration/Sprint Review
4. Retrospective

5. Backlog Refinement (optional)



1. Iteration/Sprint Planning

Rules

Duration: timeboxed to maximum 2h/sprint week

Participants: Product Owner and Development Team
(external stakeholders that may contribute are optional)

Facilitator: Scrum Master
Goal

Project predictability
Objectives

To create a Sprint Backlog
To get Team commitment for the Sprint



1. Iteration/Sprint Planning

Structure

Part 1: PO presents the Stories that are prioritized and
ready for the Sprint (half of time)

Part 2: The Team is sizing Stories and slicing them in Tasks,
then commits to PO (half of time)
Common traps

Long and boring meetings with too detailed technical
discussions

Superficial approach, team members do not really
understand the requirements

Wrong and/or manipulated estimations



'@oﬂ?; Y

wams

o



2. Daily Scrum

Rules

Duration: timeboxed to maximum 15 minutes

Participants: Development Team (PO is welcome, but
optional and must be silent)

Facilitator: Scrum Master or a Team member

Goal
Self-organizing
Objectives

To have a common Team understanding of the Sprint
progress

To collect impediments and decide who will tackle
each of them



2. Daily Scrum

Structure

Each Team member explains what he/she achieved since last
Daily Scrum, what he/she will work until next Daily Scrum and
what impediments prevent him/her to work (if any)

Common traps
Long and boring meetings with too detailed technical discussions

Superficial approach, team members do not really understand
the Sprint progress

False impediments



3. Iteration/Sprint Review

Rules
Duration: timeboxed to maximum 1h/sprint week

Participants: PO and Development Team (stakeholders are
welcome, but optional)

Facilitator: Scrum Master

Goal
Delivering incrementally

Objectives
To review and accept the Stories finalized by the Team

To discuss potential changes of the Product Backlog resulting from
the Sprint Review (priorities)



3. Iteration/Sprint Review

Structure

Team is organizing a demonstration of finalized Stories

PO is reviewing and accepting depending on DoD and
Acceptance Criteria

PO and team discuss the results of the Sprint and the
consequences on subsequent Sprints

Common traps

Acceptance Criteria not checked during review (incomplete
testing)

DoD ignored



3. Iteration/Sprint Review
Fast feedback

Remote driving Mars Rover

- 10 minutes to send radio signals
between Earth and Mars




3. Iteration/Sprint Review

Feedback
Bugs
Small cosmetic things
New ideas



4. Retrospective

Rules
Duration: timeboxed to maximum 45mins/sprint week
Participants: Development Team (PO only if invited by the Team)
Facilitator: Scrum Master

Goal
Continuous improvement

Objectives

To review the efficiency and effectiveness of the teamwork and
methods used

To determine and decide upon action items that will lead to
improving Team’s performance



4. Retrospective

Structure

Collecting Team member’s opinions about what they should
keep doing, stop doing or doing differently

Discussing and collectively deciding the improvements applied
in the next Sprint

Common traps

False harmony, avoiding to discuss about “the elephant in the
room”

Finger-pointing, personal conflicts
Failing to identify etffective action items



4. Retrospective
Retfrospective Structure

@ Close retrospective

Reflect on what helped
during the retrospective

@ Decide what to do
Identify highest priority action items

that can be planned for next sprint

@ Generate insights
Understand implications of

findings and discussions

@ Gather data
Create a shared image of what

happened during the sprint

Set the stage

Encourage the people to get in the
mood for active participation




4. Retrospective
Set the stage

Goal: getting team members in the right mood for retrospective

Check-in Focus on/Focus off
Two words summary for what they hope to Discuss on terms like “Dialogue rather than
get from retrospective or how they are Debate” or “Conversation rather than
feeling about retrospective Argument”. Discuss what to do to move people

on the right/focus on?

ESVP Working agreements

Brainstorming over working agreements they

Explorers: discover new ideas . _ .
would like to put in place for the retrospective

Shoppers: look over new useful ideas
Vacationers: happy to be away from work
Prisoners: forced to come to retrospective



4. Retrospective
Gather data

Goal: remembering what happened during last iteration

Follow-up

Discuss the success or failure of
improvement actions decided during
previous retrospective

Triple nickel

Spend b minutes gathering at least b ideas
related to a specific issue. Team is divided in
groups of b if team is bigger than 7. Pass
written issues to the right and give another 5
minutes to reflect and expand the ideas

Timeline

Team members recall good, problematic,
significant events happened on a timeline
(happy/sad faces bottom side)

Others

Mad-Sad-Glad,
Satisfaction histogram,
Team radar etc



4. Retrospective
Gather data




4. Retrospective
Generate insights

Goal: identifying potential improvements of collaboration and teamwork

Brainstorming 5 Whys Fishbone
Quiet writing: silent writing of ideas Ask why five times Visual tool to display
Round-robin: pass token around the group to discover cause-and-effect relation root cause analysis of problems: procedures,

Free-for-all: ad-hoc information generation policies, system, skills etc



4. Retrospective
Decide what to do

Goal: deciding on actionable improvements for the next iteration

Short subjects SMART goals Dot voting
Start doing Specific, Measurable, Prioritize potential improvements
Stop doing Attainable, Relevant, and focus on

Continue doing Timely most relevant 2-3 actions



4. Retrospective
Close retfrospective

Goal: ending retrospective and conclude upon its success

Plus/Delta Helped, Hindered, Hypothesis Return on time invested
Plus: what is going well in retrospectives? Helped: what is going well Feedback focused on how
Delta: what should we change? Hindered: what was a hindrance people believe their

Hypothesis: ideas of improvement time was spent



4. Retrospective

L —— e c—

Process Technical
\/\’\/\'\I\J'\IV\/"\/\'W\I\/ \/"\/\'WW\/"\/\WW
\/V\/\WW\/"\/"WW

@W What we are going to change

What we expect to happen
Who is responsible to implement it




5. Backlog Refinement (Grooming)

Rules

Duration: timeboxed to a duration negotiated by PO and Team
Participants: PO and Development Team
Facilitator: Scrum Master

Goal
Improving the planning process

Objectives
To communicate significant changes in the Product Backlog

To slice backlog items that are too big, then optionally to roughly
estimate the resulted Stories

To collect questions about the Stories that are prioritized for next
Sprint



5. Backlog Refinement (Grooming)

Structure
Flexible agenda, proposed by Product Owner

Common traps

Getting into too detailed discussions about
backlog items

Slicing backlog items using technical criteria
(Technical Stories instead of User Stories)




AGILE SOFTWARE DEVELOPMENT

mn )

User stories



User stories

« A user story is one or more sentences W
In the everyday/business language \
that captures what a user does or needs to do +

 a description
 acceptance criteria

 Format:
As a type of user,

| {want / can / need / am required to} <some goal>
so that <some reason>



User stories

_AS 4 user twant to SpE

cNec

a document sp t

hat

my document does not

contain spelling errors

A USEr can SPE

NEC

R A

“document

Spell ¢

NEC

pecument




User stories

ne sgstem snall
rewt a do




INVEST mnemonic

e Independent — allow to reprioritize In any order
e Negotiable — discuss and make tradeoffs

e Valuable — clear business benefits

e Estimable — team Is able to estimate the effort

 Small — easler to estimate and test

e Testable — how do you know when it Is done?



Independent

AS O customer tcan PaYy

AS O customer tcan Pay

for the items in wmay cart

. z r t :t 2 m
wWiEh Vica TOr TNE LLEMS LW 51 Carc

with a MasterCard

—~
\\1} @

AS O customer | can PaY
for the ttems with an
AWErLCan EXPpress ca rol

3)




Independent

Option 1. Combine the stories

AS O customer tcan PaYy

with a credit card

O}

- must support Visa, MasterCard and

Awmerican EXpress




Independent

Option 2. Split across a

AS O customer tcan PaYy

different dimension

with a first type of credit

card
(3)

AS A customer | can pag
with two additional
types of credit cards

P

@

N




Independent

Option 3. Write two estimates

AS O customer tcan PaYy

for the items in wmay cart

with Visa
3 if done 1st AS a Ol/(.StDWLeV t Oal/\/ ‘DaM
1 otherwise ! <
Tor the Leems tn ey cart

wilth a MasterCard
1 otherwise

AS O customer | can Pay
for the ttems with an
AWErLCan EXPpress ca rol

/3 if done 1st
1 otherwise




Independent

_AS A Progravmer | neeato

codte the infrastructure Tor

Processing credit card

_AS O customey [ can pay
for the itewm |
with Visa — As a customer [ can

for the items in my As A customer | can pay

with a Mastercard _Tor the ttems with an

AWErLCAN EXPpress carol




Negotiable

AS O customer t can PaYy

with a credit card

- must support visa, MasterCard and

Awmeriean EXpress




Valuable

_As aparent, lwantto

restrict my chtl

| to onliy
J

USLAG) APPS APpropriate for

children of a certain age

A&a&gst&mmdm’u@stmm

Lwant a

conflguration

wnwrormation tor all users

stored L 0 central Locatilon




Estimable / Estimatable

e The story Is too big

e Too much is unknown about the story
e Developers lack domain knowledge

e Developers lack technical knowledge




Small / Sized appropriately

B e

Iteration_ *

Future Releases

PRIORITY




Epics

_AS auser, lwanttorum
repovts.

a story that is bigger
than one team can do In
one Iteration




Testable

_Asawnoviceuser, tean
/

Pest i 4 INE SIASTEVA complete common.
ASY Lo UsE, operations without training




INVEST mnemonic

v |

v

VIV

VI VL

As a user,
foan botos botens poyor
e o 20

revere]

As a user,
[vas v bes fopan Porer
L ot 2aal

As a user,
lwwm Perev’

m-v-/.wn




When to write user stories?

 Randomly, whenever a new idea occurs

* During sprint review meetings

» During product backlog refinement /
grooming meetings,

» During story-writing workshops



When to write user stories?

* Minimum Viable Product (MVP)

* the version of a product which allows a team to collect the
maximum amount of information with the least effort

* Minimum Marketable Feature (MMF)

* A chunk of functionality that delivers a subset of the
requirements, and that is capable of returning value to the
customer when released as an independent entity



Splitting user stories

Different
priorities




SPIDR approach to splitting user stories

Spikes

Rules ///@\ Paths

Data \\\/%/ Interfaces

2 A




Splitting stories with spikes

_AS a4 mem

oey, everytiibng [

clie

e o LS trac

R_et

oy t
&)

Super Marreting

Automation 53stem

Marketing Automation

System
(@)




Splitting stories along paths

AS A usey [ wane to 0e Get request Email | Phone | Mobileapp
LVLTOYMA’@D[ a0ouc W(’Ej Assign technician Excel | Calendar | Algorithm
regquest so that [ can
t i N Assign materials Order | Bufferstock | Custom
manage my scheple
5 Confirmation request Email | Phone | Mobileapp

Hamburger technique
User story 1 - First “"bite”
Phone call, assign technician using Excel, order
materials, email confirmation

User story 2 - Second “bite”
Phone call, assign on calendar, assign materials
ased on a buffer stock, email confirmation

User story 3 - third “bite”
etc



Splitting stories by interface

AS an LOS user, | can do

whatever-1t-1s

AS an An

yold usey, |

ean do whatever-tt-1s

AS a web user, tcan d

~whatever-it-is




Splitting stories by data [

_Asa passenger | want to Look for

_the wmost suitable flights so that |

" can reach the destinations |

__choose tn optimal conditions

Choose Specify
departure and Specify maximum Specify price

preferred available

destination departure date number of limits - .
airlines flights

airports connections

User stori 1
User stori 2
User stori 3

User story 4




Splitting stories by business rules

cancel Wy Litervetion

regquests &0 that tcan

User story 1 — Cancel a request with no restrictions

,‘ Simply cancels the request
/ User story 2 - Cancel a request with an assigned
technician

Cancel request and change technician allocation

User story 3 - Cancel a request after materials are
ordered
Cancel the request and manage the financial implications



Closed stories

A closed user story is one that finishes with the user having
achieved a meaningful goal.

AS O recruiteyr [ can

manage the |ob ads 've
placed




Three steps when you can’t split a story

1. Try harder
2. Let it take more than one iteration
3. Feel guilty

Source: Mike Cohn, Splitting user stories




AGILE SOFTWARE DEVELOPMENT

mn )

Estimations in Agile



What is estimation?

GUESS ESTIMATE MEASURE
when... D when.., ~TTTTTTTTTTTTTTTTTTTmmeee when...

® @

| have no idea what | have an idea | know exactly how to
this is about about the approach it

approach
I've never done I've done exactly the
anything like this | did similar things same thing before
before

Cambridge Dictionary: a guess or calculation about the cost, size, value, etc. of something



Story points

" How long a user story will take (effort) in relative.

" Influenced by complexity, uncertainty, risk, volume of work etc



Relative sizing and story points

21

13

Estimation technique that ranks stories by their size relative to each other
and estimates based on those rankings.

Story points are typically expressed using the Fibonacci sequence of numbers

— Using this technique the estimation would be quick because one story it not
evaluated from the scratch, it is evaluated by its position relative to other
stories

— It is useful when planning for the next iteration to decide which stories can be
completed in that iteration

Guidelines:
— The team should own the definition of story points
— Story points definition should be all-inclusive
— Point sizes should be relative

— When disaggregating, totals don’t need to match
— Estimate should include complexity, effort and risk



Poker planning

= Planning poker is a consensus-based estimation technique,
mostly used to estimate effort or relative size of user stories.
After each player has selected a card, all cards are exposed at

once and consensus is reached in steps.

= Advantages:

= Minimizing the “bandwagon effect”
(grouping around most popular opinion)

= Preventing HIPPO decision making
(Highest-Paid Person Opinion)

= Minimizing the “groupthink” effect
(excessive concern for group harmony)



Wisdom of Crowds

Diversity of opinion

Independence

Decentralization

Ageregation
Trust




Wisdom of Crowds

Planning Poker

Diversity of opinion

Independence

Decentralization

Ageregation
Trust




Velocity

* The sum of the effort estimates associated
with user stories that were completed during
that iteration



Story Points

40
35
30
25
20
15
10

Velocity

10



Velocity

No of Iterations to
historical throw out

iterations from each
end

Sorted
velocities

41 =

45

5 0-7 0
35 11-12 2
38 90% 13-15 3
39 ___ confidence
40 interval 16-17 4
18-20 5
40
6
7
8



Extrapolate the velocity range

Froduct Baddoﬂ
Hem |$izo
S ——
’—
Will have ‘—- 59
- T
4 .
= _-- : 5 * 34 =170 story points — “We’ll be at least here in 5 sprints”
_ .
Might have B 90%
5 * 41 = 205 story points — “We might be here in 5 sprints”
Won’t have b ] 5%

/i

.-



Accuracy vs Precision

Accuracy >

“It is better to be
roughly right than
precisely wrong”

J.M. Keynes

Accurate, but not precise Precise and accurate

e/

Not accurate and not precise Precise, but not accurate

Precision




XS

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXKXXX
XXXXXKXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXKXXX

XXXXXXXXX
XXXXXXXXX

White Elephant Sizing

Prepare a set of user stories

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXKXXKXXX
XXKXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XL

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXKXXXXX
XXXKXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

Ask the project team to estimate
each user story through
placing it on a column

Answer the questions asked
by the team, but don't go
into too much detail



Prepare a second round using
the Fibonacci sequence

Ask the project team
to refine the estimates

Calculate the total size of the
project user stories

Calculate the time
estimated to complete
using tolerance intervals

White Elephant Sizing

XS

XXXXXXXXX
XXXXXXXXX

2

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

3

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

5

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

8

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

13

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

XXXXXXXXX
XXXXXXXXX

20 40 60 100

XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX
XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX
XXXXXXXXX XXXXXXXXX
XXXXXXXXX XXXXXXXXX

10

12

25

40

39

40 40 120 100

TOTAL

+25% => interval [254, 424]

427 SP 342 - 512 SP




Affinity estimation

Smaller Larger

Tiny Items small ltems Bigger ltems Glant ltems




X5

Affinity estimation

Smaller

XL

Larger




Affinity estimation

SO (12,




Velocity prediction

13



Velocity prediction

Commitment
34

User story User story
n+1 ee e t

Stretch stories

R T T T T TN S S S I D I I D S I R A e



AGILE SOFTWARE DEVELOPMENT

mnfa)

eXtreme Programming 1



XP Is...

... a lightweight software development
methodology for small to medium sized teams

developing software in the face of t vague or rapidl
changing requirements” -

Kent Beck



XP Is...

... a lightweight software development
meth0d0|0 gy Agile Project

Management
Jim Highsmith

_
XP o
~. > = e
. Kent Beck | James Grenning ; Robert C. Mart
Mike Beedle _Jim Highsmith | - S
Arie van Bennekum Andrew Hunt {

Clean Code
A Handbook of Agile Software Craftsmanship

Ken Schwaber
Jeff Sutherland
Dave Thomas

listair Cockburn} Ron Jeffries
Ward Cunningham Jon Kern
‘Martin Fowler| Brian Marick

Reractorine
IMPROVING THE DESIGN

Model Driven
Architecture

C I y S t a | MARTIN FOWLER
Wit ot  Kent Beck, John Brant,
Willism Opdyke, w Don Roberts
orewors by Erich Gamma
N ——T—
T
lllll !

1 sscosson
llllllll



XP Is...

... a lightweight software development
methodology

EMBRACE CHANGE

KENT BECK
w CYNTHIA ANDRES

Foreword by Erich Gamma

Second Edition



Extreme?

code
review

architecture

J

Integration
testing

_/

IS It

good?

> L

IS It

Important?

et’'sdo it
often




Mentality of sufficiency

How would you program if you had all

the time in the word?

e Write tests
« Restructure often
 Talk with teammates and customer often



XP Paradigm

Stay aware.
Adapt.
Change.



JALLE &
PLACTICES




T
roots of thing
we like

Principles =
guidelines for life

XP = Qutstanding software



XP - Values

Communication

SIm P | |C|ty constantly
communicate with the
Fee d b adC k customers and fellow
programmers
Courage

Respect



XP - Values

Communication

Simplicity keep design
Feedback simple and

clean
Courage

Respect



XP - Values

Communication
Simplicity
Feedback
Courage
Respect

get feedback by
testing the
software
starting on day
one



XP - Values

Communication
Simplicity
Feedback
Courage
Respect

deliver the system to
the customers as
early as possible and
implement changes
as suggested



XP - Values

Communication
Simplicity
Feedback
Courage
Respect

show respect for
the unique
contributions of
each and every
team member



XP - Principles

Rapid feedback
Assume simplicity
Incremental change
Embracing change
Quality work

get the feedback,
understand it, and
put the learning back
into the system as
quickly as possible

« Works as a catalyst for change
* Indicates progress
» Gives confidence to the developers tha

they are on the right track



Planning/Feedback Loops

Release Plan
Months

Iteration Plan
Weeks

Acceptance Test

Days\

Stand Up Meeting

One day 1

Pair Negotiation

Hoursl

Unit Test

Minutes

Pair Programming

Code




XP - Principles

Rapid feedback

Assume Simp“dty to treat every
Incremental change prgzligvaemittﬁan
Embracing Change simplicity

Quality work "Do the simplest thing that could possibly work'

KISS (“Keep It Simple, Stupid”
YAGNI (“You Aren't Going to Need It")



XP - Principles

Rapid feedback
Assume simplicity
Incremental change
Embracing change
Quality work

any problem is
solved with a series
of the smallest
change that makes a
difference

*The design changes a little at a time.
‘The plan changes a little at a time.
*The team changes a little at a time.




XP - Principles

Rapid feedback
Assume simplicity
Incremental change
Embracing change
Quality work

the best strategy is the

one that preserves the
most options while
actually solving your

most pressing problem



XP - Principles

Rapid feedback
Assume simplicity
Incremental change
Embracing change
Quality work

he team members
try to produce the

quality that they are

proud of

The team:
Works well
Enjoys the work
Feels good in producing a product
of value



12 Original XP Practices

Pair Programming Refactoring System Metaphor

/ﬁ
N
( \
U/
/ﬁ
S/

[ Simple Design ] [ Coding Standards 1 [ 40-hours Week 1
[ Testing ] Collective Ownership} [ Small Releases 1

—

Continuous
Integration

On Site Customer

)
N
\ /
)
S/

Planning Game




12 Original XP Practices

//ﬁ
S/

[[ Refactoring ]

N

|
|
|

[ Planning Game ] [[ (Iiontmupus ] [ On Site Customer ]
\ ntegration

Some practices, if applied in isolation, could bring chaos

System Metaphor

40-hours Week

//ﬁ
S/

Small Releases

//ﬁ
S/




12 Original XP Practices

Evolution of some practices in time

[ Refactoring ] i‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.i:f.::a[ Refactor Mercilessly ]z:z:z::ij; [ Design Improvement]

: — : Test Driven ) — Testing First ]
[ festing ] [ Development } """""" - [ Programming
[ On Site Customer ] E_ZZZZZIZZIZTZ:II::%{[ Whole Team J}

8

[ 40-hours Week ]iiiﬁiiﬁiﬁ:?'ﬁ:{[ Sustainable Pace }

3




Fine Scale Feedback

Pair Programming

Whole Team

Test Driven
Development

Planning Game

Programmer welfare

Sustainable Pace

Continuous Process

Small Releases

Design Improvement

Continuous Integration

Shared Understanding

System Metaphor

Collective Ownership

Caoding Standards

Simple Design




Programming

Simple Design

Design Improvement

Test Driven
Development

Caoding Standards

Sustainable Pace

Collective Ownership

Coding Standards

Pair Programming

Continuous Integration

System Metaphor

Processes

Whole Team

Test Driven
Development

Small Releases

Planning Game




Pair Programming

*Technique that requires 2 people, 1T computer

DRIVER: NAVIGATOR:
» Controls the keyboard » Has the role of reviewer
> Writes the code and tests > Guides the driver
> Tactics (how?) > Strategy (what?)

Important: they switch roles!!!



When to use it?

« When mentoring new hires

» For extremely high-risk tasks

« At the start of a new project

« When adopting a new technology



Benefits

» Better code, design

* Fewer bugs

» Higher morale

« Shared perspectives and knowledge
» Better time management

« Higher productivity

I All without sacrificing productivity



How to do it better?

« Have a well-defined task
» Define a goal at a time

» Rely, support and synchronize with your
partner

« Pair with everyone in the team
« Be physically comfortable
» @Give everyone a chance to be an expert

Important: communicate!!!



Proxemix
= the study of human use of space

Intimate distance (for embracing, touching or whispering)
15cm-46 cm

Personal distance (for interactions among good friends or family)
46 to 122 cm

Social distance (for interactions among acquaintances)
1.2-3.7m

Public distance (used for public speaking)
3./to /.6 m






AGILE SOFTWARE DEVELOPMENT

1 _/ 2

eXtreme Programming
2



Extreme Programming

Effective
Practices

Code reviews

Testing
Design
Simplicity

Short iterations

do
R 2

Pushed to the
extreme

Extreme Programming

Practices

Pair programming

Unit testing &
Continuous regression

Persistent refactoring

Simple designh & code
code only that is required

The planning game




Programming

Simple Design

Design Improvement

Test Driven
Development

Caoding Standards

Sustainable Pace

Collective Ownership

Coding Standards

Pair Programming

Continuous Integration

System Metaphor

Processes

Whole Team

Test Driven
Development

Small Releases

Planning Game







Business and development need to make the decisions in
tandem

Business people need to decide about

— Scope: How much of a problem must be solved for the system to be
valuable in production?

— Priority: If you are given an option, which one do you want?

— Composition of releases: How much or how little needs to be done
before the business is better off with the software than without it?

— Dates of releases: What are important dates at which the presence
of the software (or some of the software) would make a big
difference?



Technical people need to decide about

— Estimates: How long will a feature take to implement?

— Consequences: There are strategic business decisions that should be
made only when informed about the technical consequences.
Development needs to explain the consequences.

— Process: How will the work and the team be organized? The team
needs to fit the culture in which it will operate. The software must be
written well rather than preserve the irrationality of an enclosing
culture.

— Detailed scheduling/Risk priority: Within a release, which stories should
be done first?



{ Small Releases J

The only way to ensure that you are developing
the software the customer expects!

Every release could be used as a checkpoint to
measure the estimation accuracy.



IIIIIIIIIIIII

Fail Fast
Fail Often



e Product Roadmap =
visual overview of a product’s releases

* Product roadmap = sequence of releases
« Release =sequence of iterations
 |teration = set of user stories / features



[ Small Releases J

« Story Map (developed by Jeff Patton)

« Helps select and group features for a release

« Backbone - essential functionality

« Walking skeleton - smallest system that could
possible work

« Optional features



[[ Small Releases ]

The

Backbone -

Workflow sequence

Walking
Skeleton

More

Optional

Less

Optional



[[ Small Releases J]

The
Backbone

Walking
Skeleton

More
Optional

Less
Optional




A good metaphor is a powerful aid in unifying
the technical and business teams

The team evolves its own form of “¢ribal
language’, used to describe user stories and
development



“...Istill haven't got the hang of this metaphor
thing. | saw it work, and work well, on the C3 project,
but it doesn't mean | have any idea how to do it, let
alone how to explain how to do it”

Martin Fowler



Metaphor J

'Metaphor' seems to be one of the least understood
precepts of XP although its supposed to be (one of)
the most important.



Metaphor J

Metaphor is something you start using when your
mother asks what you are working on and you try to
explain her the details.

How you find it is very project-specific.
Use your common sense or find the guy on your

team who is good at explaining technical things to
customers in a way that is easy to understand.



{ Simple Design J

XP definition for simplicity.
» Runs all the tests

« Contains no duplicate code

 States the programmer’s intent for all the
code clearly

« Contains the fewest possible classes and
methods



No big design upfront!

1. Only do what you need to do now!

2. Don't add anything because you think you might need it!



Refactoring J

Refactoring is the technique of
|mprOV|ng code without changing

- — functionality
BTG OOE. Why?

Because your code should be the
simplest thing that could possibly work




( retorrs |

9) Feature envy

1) Lack of tests 10) Method too long (> 6 lines)
2)Name not from domain 11) Too many parameters (> 3)
3)Name not expressing intent 12) Test - not unitary
4)Unnecessary if 13) Test - setup too complex
5)Unnecessary else 14) Test - unclear Act

6) Duplication of constant 15) Test - more than one assert

/)Method does more than one thing 16) Test - no assert

8) Primitive obsession 17) Test - too many paths

Source: Brutal Refactoring Game, Adi Bolboaca



Testing

) Testing First ) Test Driven
Programming Development

]

Unit testing
Acceptance testing

Test Driven Development



Testin Testing First Test Driven
: Programming Development

Test Code Integrate Deploy Release Steer

- Add a test, get it to fail, and write code to pass the test
- Remove duplication



Testin Testing First Test Driven
: Programming Development

if you can't do these,

o :'hink about what you want to d} <§§/ou orobably shouldn't start

 Think about how to test it. Writing any code
* Write a small test. Think about the desired API.
» Write just enough code to fail the test.

« Run and watch the test fail. Now you know that your test is
going to be executed.

» Write just enough code to pass the test (and pass all your
previous tests).

* Run and watch all of the tests pass. If it doesn't pass, you did
something wrong, fix it now since it's got to be something you
Just wrote.

« Refactor the code
* Run the tests again

» Repeat the steps above until you can't find any more tests
that drive writing new code.




eeeeeeeeeee




( Collective Ownership J

Any person can change
the application code
at anytime

The catc/r. If you own all the code, you are
responsible for all the code as well



Continuous 10-minute
Integration Build

The longer the time period between
integrations, the more conflicts you'll see,
and the effort to integrate will increase.

The process. developers work on tasks until
complete, integrate them, run tests, fix
problems



(40—HourWorkWeekJ [ Sustainable Pace J

You cannot maintain quality with
overtime-heavy teams!

Each country or culture has differing
acceptance of reasonable working hours



[ 40-Hour Work Week J [ Sustainable Pace J

Productivity

(new work minus lost time for rework)

Hours Per Week

40 60 80 100 120



Consrecumomer | [ wnoeom ][ stogener |

Benefits
Simple Problem Solving

Avoid Misunderstanding
Immediate answers

feam Spirit



Consrecumomer | [ wnoeom ][ stogener |

The customer must be on the project full-time
for the duration and be located on-site with
the team

The customer could include users, business
experts, and any other customer-side
resource



( Coding Standards J

Mandatory — Those standards to be adhered to by all team
members.

Guidelines — Those considered best or good practice and often
describe the general approach toward development.

Recommendations — These rules are considered good practice
and should be used at all times unless there are exceptional
circumstances where valid justification can be given.



[ Coding Standards J

There are two types of people:

If (Condition) If (Condition) {
{
Statements Statements
/* / *



( Coding Standards J

Types of coding standards:

» Formatting

» (Code structure

» Naming conventions
o Error handling

« Comments



Extreme Programming Process Cycle

Source: Extreme Prograinming, tutorialspoint



1%

Extreme
Programming (XP)

1%
Lean Startup \\ 580/0

Scrum
3%

Don't Know

A —

Iterative Development

8%
~ Scrum/X
7% hybrid P O% 10%

Kanban Other/Hybrid/ ScrumBan

Multiple
Methdologies

Total exceeds 100% due to rounding.

14th Annual State of Agile Report, May 26th 2020
https://stateofagile.com



https://stateofagile.com/

Why XP is not popular?

« [t /s software engineering centric

« [t requires high investment
« Rockstar developers
» Jrainings
o Infrastructure (automation solutions)
«  Culture

o Jtisirrational (to business people)

« Unit tests, Test First Development, Story Points, Pair
Programming

o [t/s too difficult

« Jest First Development, Refactoring, Simple & Emergent
Design



AGILE SOFTWARE DEVELOPMENT

mnfa)

Lean Software Development



THE LEAN
é

Lean

Software Development
An Agile Toolkit

| ~’f‘1‘? S How Constant
BANISH WASTE | LGk A Creates Radically
AND CREATE WEALTH IN ,._,_N',_,-.;; = Successful Businesses
YOUR CORPORATION T —— e .

: - manager, and technical leader

Forewords by

Jim Highsmith

James P. Womack ok e

and Daniel T. Jones Mary Poppendieck

Tom Poppendieck

Authors of 74e Machine Thar Changed the World

‘Mandatory reading for entrepreneurs’




Lean Thinking

Agile methods

Lean Product
Development




Agile Lean

- Adaptive to change - System view of value

stream
- Shorter planning and

commitment cycles - ldentify ways to eliminate

| waste
- Focus on collaboration

and interaction - Limit work queues



Agile & Lean Commonalities

- Improve quality
- Amplify learning
- Continuously improve

- Empower people



"Think big, act small, fail fast; learn rapidly"



A Lean History

« Leanis a manufacturing & production practice that
considers the expenditure of resources for any goal
other than the creation of value for the end
customer to be wasteful, and thus a target for
elimination

 "value" is defined as any action or process that a
customer would be willing to pay for



A Lean History

« Lean is centered around preserving value with
less work

« Lean manufacturing is based on
e optimizing flow,
* increasing efficiency,
e decreasing waste,

 using empirical methods to decide what matters,
rather than uncritically accepting pre-existing ideas

« Toyota was a leader in implementing lean
practices in the 80s



Toyota Production System

O

-
=
o
=
=
(O
T




Any customer can have a car painted any colour
that he wants so long as it is black.

(Henry Ford)

iZquotes.com




The Toyota style is not to create
results by working hard. It is a
system that says there is no limit to
people's creativity. People don't go

to Toyota to 'work' they go there to
'think'.
— Jaiiche hne —

AZ QUOTES




Toyota Production System :

How could Toyota make cars in small quantities
but keep them as inexpensive as mass-
produced cars?



“Just-in-time” manufacturing

“Don't decide what to
manufacture until you have a
customer order; then make it as
fast as possible”



Case Study: Statewide Automated Child Welfare
Information System (SACWIS)

 Florida: started in 1990, estimated 8 years and $32
million
In 2002 Florida spent $170 million and estimated to be
completed in 2005 with $230 million

» Minnesota: started in 1999
« completed in 2000 at cost of $1.1 million

« Why? Standardized infrastructure, minimized
requirements, team of 8 capable people

ource: Standish Group



Lean Principles for Software Development

Maximize the value (partially work
done, delays, handoffs, etc.)

Eliminate
waste

Facilitate communication early
and often, get feedback as soon
as possible, and build on what
you learned

Amplif Allow technical people to

le make local decisions in order
to be productive and
successful (opposed to
micromanaging)

Make decisions and Defer Quickly delivering value
commit to things as late decisions to maximize project’s RO
as possible
Don’t test at the end, use techniques Build Optimize A!ign the whole syster.n not just one
that embed quality at every step quality in the whole piece, seek for better intergroup

relations



Lean Principles are... just Principles

 Eliminate waste does not mean throw away all documentation.
« Empower the team does not mean abandon leadership.

« Deliver as fast as possible does not mean rush and do sloppy
work.

« See the whole does not mean ignore the details.
 Build integrity in does not mean big, upfront design.
« Decide as late as possible does not mean procrastinate.

«  Amplify learning does not mean keep on changing your mind.



1. Eliminate waste

If a development cycle has collected requirements in a book gathering dust, that is waste
If developers code more features than are immediately needed, that is waste

Whatever gets in the way of rapidly satisfying a customer need is waste.

Handing off development from one group to another is waste



The Seven Wastes of Manufaeturing

Software Development

» _Inventory Partially Done Work
« BxtraProcessmg  Extra Processes

« Overproduction Extra Features

» TFransportation Task Switching

» Waiting

* Motion

 Defects

Shigeo Shingo, Toyota



Eliminate waste

WASTE

everything your organization does to
develop software that is not analysis or

coding.

It is usually easier to see waste in a crisis



Eliminate waste

"There is nothing so
useless as doing Peter Drucker
efficiently that

which should not be
done at all"



Eliminate waste

1. Implementing lean development is learning to see waste.
2. Uncover the biggest sources of waste and eliminate them.
3. Uncover the biggest remaining sources of waste and eliminate

them.
4. Do it again.

After a while, even things that seem essential can be gradually
eliminated



Value Stream for Cola Cans

20 min process
2 weeks store

Can Maker Hot Roller
2 weeks store 2 weeks store
1 min process 1 min process

4 weeks store

Retail Store Home
2 days store S days store
3 days store 5 min process

James P. Womack, Daniel T. Jones (1997)



Value Stream for Cola Cans

- 319 days to move from the mine to consumption
- 3 hours is the time while value is actually being added
(0.04% of total time)

Aluminum cans have to be a very stable industry
to be able to tolerate such a long value stream

James P. Womack, Daniel T. Jones (1997)



...not working for personal computers

Michael Dell

“8 days of inventory - competitors 40 days.
If Intel comes out with a new chip, | am going to
get that to the market 32 days sooner.”



Lunch at a regular restaurant

F”:g;;;g ¢ tE:an(*il:en:u Ordering Eating Paying
Value-added time
2 min 3 min 2 min 30 min 3 min
Waste
10 min 10 min 30 min 10 min
Total cycle time =100 min
Value-added time =40 min

Cycle efficiency =40/ 100 =40%



Lunch at a fast-food restaurant

Finding a

Orderin Payin Eatin
& ying table &
Value-added time
2 min 1 min 2 min 30 min
Waste
5 min 0 min 0 min
Total cycle time =40 min
Value-added time =35 min

Cycle efficiency =35/40=88%



Eliminate waste

value-added

Architecture / Design

Programming Deployment [ Delivery
Analysis / Requirements |

Testing / ACCeptance

Customer is THERLITE SYOYEN

not available Design approval

Business approval Meetings Owerengineering Fixing bugs
Excessive up-front
architecture Developers involvement Redoing because of
in other projects incorrect requirements

and stress
non-value added



Eliminate waste

How to eliminate waste:

« Make alist of the 10 or 15 most important activities in your
organization

« Rate 1-5 (1 customer do not care about, 5 customers value
it highly)

* Develop a plan to cut those with 1 or 2 points



Eliminate waste

How to eliminate waste:

Develop a value stream map
Take the biggest cause of delay and plan to cut it in half



Eliminate waste

How to eliminate waste:

Seven meetings talk about the wastes in software development:
* Do you agree that this is waste? Why?
 How much time it consumes in avg / week
 What can we do to reduce that time



3. Deliver as fast as possible

» Customers like rapid delivery

« Rapid delivery means less time for customers
to change their minds

* In-process, or partially done work can have
undiscovered defects

« Deliver as fast as possible complements decide
as late as possible: the faster you can deliver,
the longer you can delay decisions.



3. Deliver as fast as possible

Push versus Pull

fOsrae|ceas,St @ Shelves @ Counter
-

Producing based Pushing the stock
on forecast to the customer
Customer
Cook Seller Counter Customer|  needs
Adaptation On demand

production order



]
e ezt
——h L —
| Bl
e sl L
L B I




6. Decide as late as possible

In an evolving market, keeping
design options open is more
valuable than committing early.



How to avoid change penalties?

 Traditional: make the right design decision in
the first place and avoid the need to change
later

 Lean: Don't make irreversible decisions in the
first place; delay design decisions as long as
possible, and when they are made, make them
with the best available information to make
them correctly



6. Decide as late as possible

* The last responsible moment:

« delay commitment until the last
responsible moment, that is, the
moment at which failing to make a
decision eliminates an important
alternative.



AGILE SOFTWARE DEVELOPMENT

mnfa)

Other Agile Methodologies
& Practices



Most common Agile Methodologies

Scrum/XP Hybrid

ScrumBan

Kanban

;4% Ilterative

/ ‘] 9% Extreme Programming (XP)
‘| % Lean Startup

e Scrum
e XP
« Kanban

Other

2 94 Don’t know

=> [ ean

15th Annual State of Agile Report, 2021
https://stateofagile.com



https://stateofagile.com/

Most common Agile Methodologies

Scrum/XP Hybrid

» Feature-Driven Development ScrumBan b
« Agile Unified Process 4% lterative
/ ‘] 9% Extreme Programming (XP)
o Crystal ‘| % Lean Startup
° DSDM Other

« Disciplined Agile

2 94 Don’t know

« Scaled Agile Framework

15th Annual State of Agile Report, 2021
https://stateofagile.com



https://stateofagile.com/

History of Agile

_ Secrum
(Ken Schwaber, Jaff Sutherdand)

Waterfall Model  Adaptive Software Development (ASD)
(Winston W, Royce) (Jim Highsmith, Sam Bayer)
Concept of FDD
“Adaptive Software Development” (Jeff De Luca)
(Edmands, E. A
Rapid App. Development - Eﬁﬁmmmm} Agile Manifesto
(James Martin)

Lean SW Dev.
Crystal Clear | .
(Alistair Cockburn) (Marry & Tom Poppendieck)
AP

(Kent Beck, Ward Cunningham and Rom Jeffries)



PRODUCT DRVelOPMeNT Modern
(aNRaN Margemst ( pepsoNaL @ SCRUMPLOP oETF

e FLO
W ; 5. Z 15 \ Methods @ \LaNBaN PalTeRN LANGUAGES it
% (= OF PROGRA nTeypris
s DQM\N(?;D& \: S \= ’&Lﬂah RSkt 'ﬁa\:‘\P{.‘i‘foﬁ
FRoFouD Know oChuare | @ 18aN STARTUP Famenor

STe -
o QCRUM  ° LEAN purclopnert! @ cepTiFicaTions @ N(eleRaTeD AGILE

Scrambut/ Scrumand '\HBR\D ® AGILe UNIFled PROCRSS
EXTREM ¢\SPee
o XP eCR¥sTaL 20) iy ® VaracTAING
oDSDM e FDDepsD \ N \e NN B R sam ra g DISLIPLINGD Relle
5D\ ph\ o> CRaAlG & DeLverY (DAD)
SM| 3
@ THD/ATD/BDD/SBL TH o ENTERPRISE UNIF[ED
Begrin' it e end in mind OPeN YouR eyes PROCESS (EUP)
ONRXT 2]
o VANGUARD ® DRiveN Yo OTHeR. METHODS _ | ARGE
METHOD TeSTING ® SCALE 'ENQEEESSF
(RV
SN @toLeckacy @ RIGHTSHIFTNG | SCALED AGLE TR @xscALe
RUDAEING _ paagemenT @ 2100 fgang-WORK (AelLe THG)
RADICAL @ .0 NeTWORK - ? @ DV OPS
: POTIFY /SQUADIFICATION
VONRGEHENT  @DRVE @ CYEFIN | PROGRAMMER o M edbo HicR
® : 0B_PROGRAMMING @
THeoRrY f cONSTRAINTS - aNaRCHY (gmm,\mmmm




Feature Driven Development
(FDD)



Feature Driven Development (FDD) o

* |terative/incremental software process
« Developed in 1997 by Jeff De Luca

« Domain Model is the core of FDD
(no specific values / principles defined)



Feature Driven Development (FDD)

Requirements are gathered using a top-down
approach

» Subject Areas (general business practices)

 Feature Sets (business activities)
e Features (tasks)

Typically 2 week iterations



Feature Driven Development (FDD)

Initial Model
Modeling Storming
Develo Build a + :
P Planby | _N| Design by Build by
an Overall > Features |:D- Feature | Feature :D- Feature
Model List
(mare shape A list of features A development plan A design package
than content) grouped into sets Class owners Completed
_ and subject areas Feature set owners (add more content client-valued
An object model to the object function
+ notes. < | model)

Copyright 2002-2005 Scoll W. Ambler
Original Copyright 5. R. Palmer & J M. Felsing



Feature Driven Development (FDD)

Everything is
plannedq,
designed,
built,
managed
at the feature level.



Feature Driven Development (FDD)

« Formula for defining features:
< action > <result > [of | to | for | from] < object >

“Calculate monthly payment for car loan.”



Feature Driven Development (FDD)

Roles:

-  Project Manager -administrative, financial, reporting responsibilities

«  Chief Architect -controls the design of the Domain Model manages the technical
architecture, design sessions, and code reviews.

« Development Manager - manages daily development activities, coordinates the
development team

«  Chief Programmer -senior developer who is responsible for a specific Feature Set and

-  Class Owner -developer who reports to the CP and designs, codes, tests, and documents :
: features :

-  Domain Expert - defines requirements as features that the solution must provide.
Business analysts are the most common Des

- Tester - is responsible for validating that features perform as defined.

- Deployer - manages the data definitions and conversions and supports the deployment
of code to the various platforms.

0 Technical Writer - creates and maintains the documentation for users.



Feature Driven Development (FDD)

Employee Management {(EM)
nep pd prd
Rilarane Lizrnage
Ermployes Employes
YWork Berefits
Schorkuls [12)
)
3%
| Apr AWF

nventory Management {IM)
cijl ped ric
Order Food Drder MNon-
Tagples oo
(31) Suppies

2%

o

Vendor Management {VM)

p

Riartape
Verdor

Acrouniiry
(15)

Riay 7007

Parking Lot Chart

A visual, low maintenance way to
report the progress of feature sets



Feature Driven Development (FDD)

The exact state of each feature is documented

in a table with six specific milestones

« Domain Walkthrough
» Design

* Design Inspection

« Code

» Code Inspection

* Promote to Build



Agile Unified Process



Agile Unified Process

“Three Amigos"". Grady Booch, James Rumbaugh, Ivar Jacobson
Early 90 Unified Modeling Language (UML)

Founders of Rational Software Corporation (today division of IBM)



Agile Unified Process

= simplified version of Rational Unified Process

(EssUP - Essential Unified Process - first attempt to simplify RUP by I.

Jacobson)

* “high ceremony” framework

« based on integration of different agile
concepts and techniques



Agile Unified Process

6 philosophies

« Competence - The team knows what it's doing. They won't read detailed
process documentation, instead will apply high-level guidance and standards.

«  Simplicity - Describe things concisely on a few pages, not reams of pages.
«  Agility - Conforms to the values and principles of the Agile Alliance.
«  Activity - Focus on only the high-value activities that count. Ignore the noise.

« Tools - Simple tools are often the best. Recommends using the tools best
suited for the job.

«  Tailor - AUP works best when tailored to the needs defined by the context.



Agile Unified Process

Phases

« Inception - cultivates a shared understanding of the project scope
and defines architectural choices.

- Elaboration - develops the understanding of the system into
requirements and validates architectural choices.

« Construction - occurs until system development is completed.
« Transition - all testing and system deployment to production.



Agile Unified Process

Disciplines

. Model - Use a model to represent the organization's business approach, the problem
domain, and any viable solution to solve the problem.

. Implement - Code the model( s) into executable code and perform unit testing.

. Test - Apply additional tests to find defects, validate the system design works, verify the
requirements are satisfied, and ensure code quality.

. Deploy - Plan and deliver the system for end users.

. Configuration Management - Control all project artifacts, including version tracking and
change management.

. Project Management - Provide project management, including scope, resource, risk and
progress management, and coordination of external interfaces, to achieve an on time, on
budget completion.

. Environment - Provide process guidance standards and ensure needed tools are available
for the team



Agile Unified Process

Disciplines

Business Modeling

Reqguirements
Analysis & Design
Implementation

Test

Deployment

Configuration &
Change Mgt

Project Management

Environment

Inception I Elaboration ‘ Construction I Transition

|
i
I
2
|
I
l
|




Crystal



Crystal

o Alistair Cockburn, 2004

* Family of frameworks

« based on size & criticality

* not upward/downward
compatible




Crystal

Key Principles

«  Frequent Delivery: Project owners/customers can expect deliverables from the team(s)
every couple of months.

-  Continual Feedback: The entire project team & stakeholders meets on a regular basis to
discuss project activities.

«  Constant Communication: Teams co-located in the same room/facility. All projects expect
to have frequent access to the person(s) defining the requirements.

»  Safety: 1. The safe zone that team members must have to be effective and to

communicate truth during the project.
2. Evaluate how software projects affect the safety of their end-users.

«  Focus: There should be enough time to complete priority items each without interruption.

«  Access to Users: Project team will have access to one or more users of the system being
built.

«  Automated Tests and Integration: Controls must be put in place to support versioning,
automated testing, and frequent integration of system components.



Crystal

 Size: number of people involved in the

project.

« Bigger size - more formality to the structure, artifacts
and management

o Criticality: the potential for the system to

cause damage
« More critical: increase the rigidity of the project needs



Crystal

Life L6 .20 L.40 [L80 L[L200
Essential
Money E6 E20 E40 ES8O E200

Discretionary | g D20 | | D40 “EL i
Money

Comfort Cé6 C20 | | C40 MHe:immrevii

Clear Yellow Orange Red Maroon Blue
1-6 7-20 21-40  41-80  81-200  200-500



Crystal Clear

« Has the fewest defined roles:

Sponsor
Senior Designer
Programmer

» Roles of project manager, business analyst,
tester, etc. are shared among all team
members.

« The expected release is every 60 or 90 days
« Minimal documentation (project milestones)



Crystal Orange

« Roles:

Sponsor

Project Manager
Business Analyst
Architect

Senior Designer
Programmer
Tester

* The expected release is every 90 or 120 days



Crystal Orange (cont)

« Specific Deliverables:

 Requirements Document

« Release Sequence (Schedule)

* Project Schedule

» Status Reports

« Ul Design Document (/7 needed)
* Object Model

« User Manual

 TJest Cases




Dynamic Systems
Development Method
DSDM



Dynamic Systems Development Method

» UK, 1990,

« DSDM Consortium (manages DSDM framework
versions)

« Mot popular Agile methodology practice in UK

« Developed as an extension for RAD (Rapid
Application Development)

* One of the heavier Agile approaches



Dynamic Systems Development Method

» Principles
* Focus on the business need
* Deliver ontime
« Collaborate
* Never compromise quality
« Build incrementally from firm foundations
« Develop iteratively
« Communicate continuously and clearly
« Demonstrate control



Dynamic Systems Development Method

 Phases:

« Pre Project: Things that need to occur before the project begins.

« Project Lifecycle: The actual project occurs. This phase is broken
into five stages:

— Feasibility Study

— Business Study

— Functional Model Iteration
— Design and Build Iteration
— Implementation

« Post Project: Things that need to occur after the project has
been completed.



Dynamic Systems Development Method

‘ Pre Project l!& ‘ Post Project !

Feasibility
Study

Business Study

Functional / A o4 Implementation
Model Iteration A

Design & Build
lteration




Scaled Agile Framework
SAFe



i A
é . m
Organizational Enterprise Government
Agility
B
- ”
. Epic Enterprise
Lean Portfolio m Owners Architect
Management \\A/A
B @
=] wd
) Solution Solution
Enterprise Arch/Eng Mgmt
Solution =
Delivery ES
STE
: Business & @
Agile Owners
Product
Delivery \a¥"
2 [\
sl i
System Product
Arch/Eng Mgmt
o
Team and ®
Technical ;\?’V RIE
Agility
Agile Teams
3
e V|
“. Product
Owner
@
Continuous . i
: crum
Learning Mootes
Culture

Business | Technology

-«

200U R

Operational Value Streams

-
S |
c |-
o ==
< NFRs
o Sm— .— Portfolio Backlog
. .---
° == = Iy \__‘:_j.
Strategic Portfolio - PB ’ Lean Budgets
Themes Vision e
Guardrails
WSJF
Compliance § ==z
cw = .
MBSE S —
Set-Based NFRs

Solution Backlog

Customer Centricity

WSJF
[ .
o ==
o = -
g - |-
> =
: : Program Backlog
Design Thinking
. ‘ P
.Dx i =
* Plan fo >
» Execute [ co
-=p * Review — @ A
scrum " e 1.
Team Backlogs [ y |
a
v
3 ce1
= Goals
- .
= E-
Kitban Pl Objectives

Lean-Agile
Mindset

Core

!
—  Values

Business Agility

©]

SAFe
Principles

&"™4§ Measure
? 4 A\ &Grow

PORTFOLIO

P
Coordination ’ ﬁ\ KPlIs

Development Value Streams Solutions

Solution [ @ LARGE

Demo 425) 4y SOLUTION
"\’,/ \_./,,’
RH RE
— L | =
sowrion @80T \
TRAIN | e Supplier ‘ )
Continuous Delivery Pipeline ESSENTIAL
v e )
\ Solution
= AGJILE RELEASE TRAIN ~ (’\
| —— e e sy
y 3 s £ p N .!
Continuous Continuous Continuous Soluti
Exploration Integration Deployment c?::t:;'t‘

@ 99 -9 ReleaseonDemand 9% - 9 - 9-9 @

®) C o] )
Y
System Demos System Demos 4 9 /\
&
=]
§ Exm s E DevOps
i i E
= = K
3 : B
Q
Iterations lterations Built-In
gLl Pl Quality

Architectural Runway  Leffingwell, et al. © Scaled Agile, Inc.

*==™3 Implementation
Roadmap

.o‘%},{

Lean-Agile Leadership

oo

Vision




SAFe Specifics

A system must be managed. It will not
manage itself.

Left to themselves, components become
selfish, independent profit centers and thus
destroy the system...

The secret is cooperation between components
toward the aim of the organization.

—W. Edwards Deming



SAFe Specifics

AGILE RELEASE TRAIN ~

« ART =a team of (cross-functional) teams

e« Common cadence

« Agreement inside ART on the meaning of
story points

“Your Customer is whoever consumes your
work.”



SAFe Specifics

» Program Increment planning: each 5 iterations
* Prioritization is done based on Cost of Delay & Weighted Shortest Job First

User-business Time Risk reduction and/or
value T criticality + opportunity enablement

Job size




SAFe Specifics

CoD

Cost of delay

Job duration
(Job size)




Modern Agile



Modern Agile is a community for
people interested in uncovering
better ways of getting awesome
results. It leverages wisdom from
many industries, is principle driven
and framework free.

Joshua Kerievsky, CEO, Industrial Logic



2015 - Joshua Kerievsky

modernagile.org;

.-‘.r__’w_,__,__w__g
Individuals & |
Interact (m ]

Make People
Awesome

MODERN
AGILE



http://modernagile.org/

The Heart of Agile



The " Dath of Non-Allegiance”

“| promise not to exclude from consideration any idea based on its
source, but to consider ideas across schools and heritages in order
to find the ones that best suit the current situation.”

I Signed It!

¢

The Oath of
~ Non-Allegiance |



A

Complicatedness

just master
the basics!

just code

mastery




The Heart of Agile

Collaborate

Qv

2015 - Alistair Cockburn

heartofagile.com/



https://heartofagile.com/

Other (extreme)
Agile practices



#NoEstimates

Vasco Duarte




#NoEstimates

300

ESTIMATIONS
250 -
200
Min of Cycle Time
| 150 -
: Max of Cycle Time
Average of Cycle Time
100 NO
ESTIMATES
50
0 . | . .
0 1 2 3 5 8 13 20 40 100
Cory Foy @cory foy - 27 Jan 2014
A chart | just ran for a team. Bottom numbers are the story point estimates, left numbers are cycle time in *days™ pic.twitter.com/hiJQDtVOLK




#NoEstimates

After just 3 sprints

Story Points predictive power # of Stories predictive power

The true output: The predicted The true output The predicted
349,5 SPs output: 418 SPs 228 Stories output: 220
completed completed Stories

r

#NoEstimates Whitepaper by Vasco Duarte




#NoEstimates

After just 5 sprints

Story Points predictive power # of Stories predictive power

The true output: The predicted Thetrueoutput  The predicted
349,5 5Ps output: 396 SPs 228 Stories output: 220
completed completed Stories

+13% r

#NoEstimates Whitepaper by Vasco Duarte




#NoBacklog

Future Releases

PRIORITY



#NoBacklog

“Most backlogs are waste.
Estimating backlog items is therefore super-waste.

Revisiting backlog estimates are In
mentally-deranged territory”

Paul Klipp



AGILE SOFTWARE DEVELOPMENT

1 _/ 2

Kanban
part 1



Kanban

“signal card”



E Container avec KANBAN
E Ticket KANBAN

Poste 1 Poste 2

|
!

—FE —8 @ @
]

KANBAN (retour)



Foint of
Manufactiuring

Descripticon

Pull Signal - Card

2055 5627

Standard

Fack
Caontairner

CMPT PAN
27STYLE

STORE

Foint ot
(M}

Par Mumbér

Desigraled
Storage
Aren

Standard

Fack
Cuantity




=7 KanbanBOX
Nk 0o CPEATE LUROE

Fatrumber | \ITI0027

Fartsescrgtion | BOLT

Supplier S005 Acme inc.

Cumamear W01 Raw mal. warahouse
Lead Tire S working days

Bin cT09

sy 300 PCS

e

52YQ2USM

Limits
work in progress
(WIP)



(T P
dl
P i
sl

nervo | s I Pho | her |

PART NO.




« Kanban systems c Pull systems

« Systematic way to achieve a sustainable pace of work

« An approach to introducing process changes that would
meet with minimal resistance

« Kanban requires that process policies are
defined explicitly

* First virtual Kanban system for software
engineering: 2004, Microsoft



Recipe for success

» Focus on Quality

« Reduce WIP

« Deliver Often

* Prioritize

 Attack sources of variability
to improve predictability

Kanban delivers all of them!



Number of Tasks

Cumulative Flow Diagram

Cycle Time

In Progress I
Still To Do

Lead Time

Time

Backlog Dev

Testing

Done Deployed




Features

175

150
125

-

' Avg. Lead Time

Features

| 1
-— - - c - - -
© (= =] 8 8 9 o o "qo, 'qQ, o
©° 2 3B B O i ey Tmyl G ML el
A b S : - W O ' I3
o~ o O S - o BN e M o

@ Inventory @ Started O Designed 0O Coded m Complete

240

220

200

180 -

160 4
140 4

120 -
100 -

Avg. Lead Time

— —_/
& ® g O S
Time

@ Inventory m Started O Designed 0 Coded m Complete

1. Longer lead times seem to be associated with

significantly poorer quality!

2. Great amounts of WIP -> Longer lead times




Conclusion

« Reducing work-in-progress, or
shortening the length of an
iteration, will have a significant
impact on initial quality.



Also...

» Frequent releases build trust



The throughput of a process is constrained by a
bottleneck.

It's unlikely we know where that bottleneck is. (all claim
to be completely overloaded)

When limiting the work-in-progress within => only the
bottleneck resources will remain fully loaded.

The other workers in the value stream will find they
have slack capacity.



2004 - developed upgrades & fixed production
bugs
for about 80 cross-functional IT applications used
by Microsoft



PM Dev Mgr Test Mgr

—_—
% % User Acceptance Test

MR,

NLLLULL L LR L LU L I

|

Product
Managers —_— 155 Days




PTC
Hon-code Fix
]

=20
=20

FM — Dev Mgr Test Mgl
Change
Requasts
== Ir'
ﬁ
E/"" %;' oo E \‘;—_{-’ i
i %E % Uear Accaptance Test
Froduct
Managers i 155 Days

s



An average request took 11 days of engineering!!!

— More than 90 percent of the lead time was queuing,
or other forms of waste.

— The estimation effort was consuming 33-40% of
capacity



\g /

(awe
& % User Acceptance Test

5 Buffer)
Product Backing 25 Days

Managers l '

-
-
-
—_—
-
—_—
-
-
-
-
- -
- -
-
- -
-
-
-
—
-~
. —
—
—_
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
=
R
—_—
.
-
-
.-
.

————————
—
—_—_——
O —
————————
P —
—_—
-
———
S —
———— —————e
D —
—————— e
o ——
CE—
—
S —— e —
-———
CE—
- e———————
O —
-
S e—
e ———
. —
S e ——
P —
-—
—— -
e e
— et
—
-_————
O —
————————
W —
—_———— -
S —
——
0 eA ——
- - ————————e
S —
——







i ”—ﬂ
Expedite E
? Lacal Mgr
&

= S %\ﬁ = \\\

= K

A e

ﬁ. _E
e i e
E‘E' & BuMer)
— —3=
S
E— T
—— §-
E—

ﬁ B = % i User Accoptance Test
R
B =
E %
Frosduct

14 days

Managers I I

The backlog was eliminated entirely on November 22, 2005!



Conclusions after implementing first
Kanban System

Kanban:

» enables incremental changes

« enables change with reduced political risk
« enables change with minimal resistance

« will reveal opportunities for improvement that do
not involve complex changes to engineering
methods

Changes can take time to take full effect!



6 3 s 3 5
Pending Analysis Development | Test | Deploy

™ .
Sl e
[ DJj
. .

(HOLOC

6 3 s 3 5
Pending Analysis Development | Test | Deploy

j Doing D;—ncp) Doing % J j
- m| .
- ) . |
z g
-

=y

7




Control/Influence

Requirements Ana IySiS System

prioritization Design Operations
Portfoli ﬁ -
moarnaogleoment Codi ng

? Testing




Kanban
IS an approach that drives change
by optimizing
your existing process.



AGILE SOFTWARE DEVELOPMENT

mnfa)

Performance Management
in Agile Teams



Project performance

Favorable conditions Unfavorable conditions

Unappealing project
Disengaged customer
Junior team
New technology
High-risk domain

Interesting project
Involved customer
Mature team

CHALLENGES
Because of ...condition, (causel.....ccooevviveviniireennnnen.
It will/might happen that ...[l88E .. ......u........
Leading to ... E8H8Ch e,




Types of challenges

Risks
Probability of condition < 100%

Probability of trigger = 100%

Strategy: mitigation, contingency, transfer

Assumptions
Probability of condition < 100%
Probability of trigger < 100%

Strategy: constant checking

Issues
Probability of condition = 100%
Probability of trigger = 100%

Strategy: solve

Constraints
Probability of condition = 100%
Probability of trigger < 100%

Strategy: adapt



Approach

2 Or OO

SYMPTOMS CAUSES DIAGNOSTIC SOLUTIONS
How it manifests, What are the most How we may diagnose What can be done to
what are the main probable root causes the nature and severity address the challenge

perceivable effects for the symptoms of the challenge or remove the cause



Most frequent symptoms

Demotivated team members Superficial testing

Poor story writing skills Low Lack of testing scenarios
Poor team collaboration velocity High percentage of juniors
High percentage of juniors Poor Definition of Done

Symptoms
Poor estimation technique/skills Team is pushed by someone/something
Lack of skills complementarity Fluctuant Over Defective sprint planning
Poor story splitting velocity oolalniisaia Sprint backlog not protected

Poor Definition of Ready Internal and external dependencies

Excessive
changes

Poor Product Ownership
Lack of a shared vision
Real stakeholders not involved
Inattention to good design



Most frequent symptoms

Demotivated team members
Poor story writing skills Low

Poor team collaboration velocity

High percentage of juniors

Superficial testing

Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Poor estimation technique/skills
Lack of skills complementarity
Poor story splitting

Poor Definition of Ready

Team is pushed by someone/something
Defective sprint planning

Sprint backlog not protected

Internal and external dependencies

Poor Product Ownership
Lack of a shared vision
Real stakeholders not involved
Inattention to good design



Low VGIOC"Y (compared to project complexity)

Demotivated Poor story Poor team High percentage
team members writing skills collaboration of juniors

Sometimes an issue or risk, Usually a constraint,

: : Always an issue Always an issue : :
sometimes a constraint sometimes an issue
Face-to-face talking Check INVEST rules Apply Gemba (mingle) Examine team CVs
Direct observation Check acceptance criteria Attend daily standups Direct observation
Seek for deeper cause Story writing meetings Apply value stream mapping  Get external mentoring support
Align project & team goals Use business analysis skills Maintain a stable team core Replace some team members
ADAPTING Manage stakeholders Don’t adapt, solve itl Sent ek, el il Manage stakeholders

expectations expectations




Most frequent symptoms

Demotivated team members Superficial testing
Poor story writing skills Lack of testing scenarios
Poor team collaboration High percentage of juniors

High percentage of juniors Poor Definition of Done

Poor estimation technique/skills Team is pushed by someone/something
Lack of skills complementarity Fluctuant Defective sprint planning

Poor story splitting velocity Sprint backlog not protected
Poor Definition of Ready Internal and external dependencies

Poor Product Ownership
Lack of a shared vision
Real stakeholders not involved
Inattention to good design



Fluctuant velocity

ADAPTING

Poor estimation
technique / skills

Lack of skill
complementarity

Poor story
splitting

Unclear
Definition of Ready

Always an issue

Sometimes an issue or risk,
sometimes a constraint

Always an issue

Always an issue

Analyze effort / SP
Test previous estimations

Analyze effort / team member
Look for bottlenecks

Monitor unfinished stories

Monitor sprint plannings
Ask team which is the DoR

Review current SP system
Move to a different technique

Pair working
Knowledge sharing strategy

Apply splitting techniques
Adopt a SP threshold

Run a clarification session
Review periodically DoR

Don’t adapt, solve it!

Match stories to skills

Don’t adapt, solve it!

Don’t adapt, solve it!




Most frequent symptoms

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Superficial testing

Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Poor estimation technique/skills Team is pushed by someone/something
Lack of skills complementarity Defective sprint planning
Poor story splitting Sprint backlog not protected
Poor Definition of Ready Internal and external dependencies

Poor Product Ownership
Lack of a shared vision
Real stakeholders not involved
Inattention to good design



Poor quality of deliverables

ADAPTING

Superficial
testing

Lack of
testing scenarios

High percentage
of juniors

Poor
Definition of Done

Always an issue

Always an issue

Usually a constraint,
sometimes an issue

Always an issue

Analyze QA effort / SP
Monitor escaped defects

Inspect testing practice
Examine acceptance criteria
(Given... When... Then...)

Monitor bugs by seniority

Monitor sprint reviews
Ask team which is the DoD

Increase test automation
Introduce QA metrics

Adopt AC format
Include test scenarios in DoD

Implement code review
Implement unit testing

Run a clarification session
Review periodically DoD

Don’t adapt, solve it!

Don’t adapt, solve it!

Create a bug fixing squad
Accept workarounds

Don’t adapt, solve it!




Most frequent symptoms

Demotivated team members Superficial testing
Poor story writing skills Lack of testing scenarios
Poor team collaboration High percentage of juniors

High percentage of juniors Poor Definition of Done

Poor estimation technique/skills Team is pushed by someone/something
Lack of skills complementarity Over Defective sprint planning
Poor story splitting oloaalaalinnn =l Sprint backlog not protected
Poor Definition of Ready Internal and external dependencies

Poor Product Ownership
Lack of a shared vision
Real stakeholders not involved
Inattention to good design



Over commitement (constant or frequent)

ADAPTING

Team is pushed by
someone/something

Defective
sprint planning

Sprint backlog
not protected

I
Internal & external

dependencies

Always an issue

Always an issue

Always an issue

Usually an issue,
sometimes a constraint

Monitor communication
Discuss with informal leaders

Inspect planning practice
Examine task allocation

Monitor changes of sprint
backlog
Daily Scrum/Standup

Monitor for waitings &
approvals (process waste)

Coach the pushing person
Coach team to commit

Split stories in subtasks
Introduce WIP limits in sprint

Coach PO/stakeholders
Coach team to discipline

Include dependency in DoR
Remove dependency from DoD

Don’t adapt, solve it!

Don’t adapt, solve it!

Don’t adapt, solve it!

Improve availability of
external resources




Most frequent symptoms

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Superficial testing

Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Poor estimation technique/skills
Lack of skills complementarity
Poor story splitting

Poor Definition of Ready

Team is pushed by someone/something
Defective sprint planning

Sprint backlog not protected

Internal and external dependencies

Excessive
changes

Poor Product Ownership
Lack of a shared vision
Real stakeholders not involved
Inattention to good design



Excessive cha NJES (affecting budget and time)

ADAPTING

Poor product
ownership

Lack of a
shared vision

Real stakeholders
not involved

Inattention to
good design

Always an issue

Always an issue

Usually an issue,
sometimes a constraint

Always an issue

Inspect project backlog
Discuss with stakeholders

Inquire team members
Examine PO-team alignment

Monitor decision making
process

Create a refactoring backlog
Monitor refactoring needs

Coach the PO
Get support for PO

Reiterate project goals
Create project visual maps

Get real decision makers
on board

Get support from architects
Create solution architecture

Don’t adapt, solve it!

Don’t adapt, solve it!

Implement pseudo dual track
(prototype-develop)

Don’t adapt, solve it!




Project governance

VISUALIZE THE LIMIT WORK IMPROVE BY ENABLE
WORK IN PROGRESS METRICS FEEDBACK

3

[ § | g

3

[ § | g

3

[ § | g

TRANSPARENCY
ENGAGEMENT
ALIGNMENT
FOCUS



Coordination performance

Release planning =

Definition of Ready
} Rules of engagement = .
Definition of Done 6. Delivery
management
Agile ceremonies (monthly plannings,
weekly alignments, reviews etc)
Dealing with high level impediments Way of working =
Creating transparency on progress
Risk identification
Risk strategy decisions 5. Risk
management

Risk-based priorities

Identifying dependencies
4. Dependency

Visualizing dependencies
management

Reducing dependencies

Responsibilities

of

Coordination Layer

1. Product
leadership

2. Stakeholder
management

3. Backlog
management

~ Product vision

— Product roadmap

= Product conceptual perspective

= Preliminary product sizing

~ Agreeing on rules and policies

- Advocating for continuous improvement

-~ Self-organizing projects —
~ Levels of empowerment

= Training, mentoring, coaching

Encouraging constructive disagreements
- Collaborative environment —[

Managing conflicts

Managing expectations

Integrating strategy changes

Feature writing
Linking features to customer's needs

Prioritization techniques



