
Introduction in
Agile Methodologies

Course content

◼ Agile Methodologies - Overview

◼ Scrum

◼ Extreme Programming

◼ Kanban

◼ Lean Product Development

◼ Other Methodologies: Crystal, AUP, DAD

◼ The future of Agile

Seminar content

◼ Agile Problem Solving

◼ Agile Mindset

◼ Agile Estimation

◼ Team Organization

◼ Limiting Work in Progress

Source: Peter Leeson - The Battle for Success (ITCamp 2014)

User Customer

Front Desk

Sales
Engineering

Mngt

Estimates
Eng. Team

Eng. Team 2

Requirements

Architecture
Design

Customer Rep

Demo

Deliver

Story/Spec

Product
Backlog

Sprint
Backlog Sprint

Estimates

Sprint Planning

Monitor/ScrumIntegration

Development

Release
Planning

But, that's not
really what I

wanted!

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt

Ron Jeffries
Jon Kern

Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

Scrum

XP

Crystal Model Driven
Architecture

Agile Manifesto (2001)

• Individuals and interactions
over processes and tools

• Working software
over comprehensive documentation

• Customer collaboration
over contract negotiation

• Responding to change
over following a plan

Agile Manifesto
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Our highest priority is to
satisfy the customer through

early and continuous
delivery of

valuable outcome.

Principle 1

CUT THE SCOPE IN MILESTONES AND
DELIVER AS SOON AS POSSIBLE

BE AWARE THAT OUTPUT IS NOT
NECESSARILY OUTCOME.

Welcome
changing requirements,

even late in development.
Agile processes harness

change for the customer's
competitive advantage

Principle 2

CUSTOMERS DON’T KNOW WHAT
THEY WANT. THAT’S OK.

PRODUCT BACKLOG IS ALWAYS
CHANGING. THAT’S ALSO OK.

Deliver
working versions frequently,
from a couple of weeks to a

couple of months,
with a preference to the

shorter timescale.

Principle 3

ALWAYS PAY ATTENTION TO QUALITY.

DELIVER A FUNCTIONAL VERSION AS
OFTEN AS POSSIBLE.

Business people and
developers

must work together daily
throughout the project.

Principle 4

KEEP STAKEHOLDERS AS CLOSE AS
POSSIBLE.

WORKING TOGETHER MEANS BEING
TRANSPARENT, INSPECTING AND

ADAPTING CONTINUOUSLY.

Build projects around
motivated individuals.

Give them the
environment and support
they need and trust them

to get the job done.

Principle 5

AGILE IS NOT MOTIVATING PEOPLE.
LEADERS AND PROJECTS DO.

ENVIRONMENT MEANS CONTEXT,
CONSTRAINTS AND OBJECTIVES.

TRUST IS ESSENTIAL TO AGILE
PRACTICE.

The most
efficient and effective
method of conveying

information to and within a
development team is

face-to-face conversation.

Principle 6

EFFICIENT MEANS BEING CONCERNED
ABOUT CONSUMED RESOURCES.

EFFECTIVE MEANS BEING CONCERNED
ABOUT GOAL ACHIVEMENT.

INDIRECT COMMUNICATION SHOULD
BE USED WITH PARSIMONY.

Working deliverables
are the primary measure of

progress.

Principle 7

PAY ATTENTION TO ACCEPTANCE
CRITERIA.

MAKE SURE TO DEFINE EXACTLY WHAT
ARE THE DELIVERABLES.

MEASURING PROGRESS IS CRUCIAL TO
AGILE PROJECTS.

Agile processes promote
sustainable development.
The sponsors, developers
and users should be able

to maintain a
constant pace indefinitely.

Principle 8

SUSTAINABILITY REFERS TO BUDGET,
SCOPE AND EFFORT.

AGILE PROJECTS ARE MARATHONS,
NOT 100m HURDLES.

Continuous attention
to technical excellence and

good design
enhances agility.

Principle 9

CONTINUOUS ATTENTION IMPLIES
FROM THE VERY BEGINNING.

TECHNICAL EXCELLENCE IS CHOOSING
THE RIGHTEST SOLUTION DEPENDING

ON PROJECT’S OBJECTIVES.

Simplicity
– the art of maximizing the
amount of work not done –

is essential.

Principle 10

NO UNNECESSARY COMPLEXITY.

The best architectures,
requirements, and designs

emerge from
self-organizing teams.

Principle 11

SELF-ORGANIZING MEANS
COLLECTIVELY ASSUMING AND

PRACTICING
MANAGEMENT PRINCIPLES.

At regular intervals,
the team reflects on how

to become more effective,
then tunes and adjusts its

behavior accordingly.

Principle 12

NEVER GIVE UP ON RETROSPECTIVES.

REFLECTING INVOLVES A GENUINE AND
HONEST CONCERN.

ADJUSTING MEANS A MEASURABLE
IMPROVEMENT.

Agile manifesto

Individuals and
interactions

Working
deliverables

Customer
collaboration

Responding to
change

Face-to-face
conversations

Motivated
individuals

Self-organizing
teams

Working
together

Satisfied
customer

Sustainable
pace

Changing
requirements

Simplicity

Continuous
improvement

Technical
excellence

Progress by
deliverables

Frequent
deliveries

Our highest priority is to
satisfy the customer

through early and continuous
delivery of valuable deliverables.

Deliver working deliverables frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Welcome changing
requirements, even late in the

project. Agile processes harness
change for the customer's

competitive advantage.

Business people and team
members must work together

daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they

need and trust them to get the job done.

The most efficient and effective
method of conveying

information to and within a team is
face-to-face conversation.

Working deliverables are
the primary measure of
progress.

Agile processes promote sustainable work.
The sponsors, team members, and users

should be able to maintain a constant pace
indefinitely.

Continuous attention to
technical excellence and good
design enhances agility.

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts
its behavior accordingly.

Simplicity – the art of maximizing the
amount of work not done – is essential.

The best architectures,
requirements, and designs

emerge from self-organizing
teams.

Agile
vs

Waterfall Methodologies

Overall
picture

WATERFALL AGILE

Fixed

Estimated Resources Time Scope

Requirements Resources Time

Plan

Driven

Value

Driven

Change

◼ Incomplete specifications

◼ Significant estimation errors

Controlling Change

Reacting to Change

Planning

Jeff Patton: http://www.agileproductdesign.com/blog/dont_know_what_i_want.html

Incremental

Iterative

"Tahitians at rest" Paul Gauguin

Iterative & Incremental

Waterfall

Agile

Communication

Hierarchical Organization

Cooperative Organization

Learning

The Backwards Brain Bicycle

Value vs Risk

Milk is cheapest in
BIG cartons

Software is cheapest in
lots of SMALL cartons

Definition

BEING
AGILE

DOING
AGILE

Hybrid Approaches
Scrum Methodology. Roles

From “Agile Software Development”, A. Cockburn (Addison-Wesley, 2002)

Levels of Software Method
Understanding and Use

from "Balancing Agility and Discipline", Barry Boehm & Richard Turner

from "Balancing Agility and Discipline", Barry Boehm & Richard Turner

Agile

Predictive

“We can never direct a living
system, only disturb it and
wait to see the response…

We can’t know all the forces shaping an
organization we wish to change, so all we can do is
provoke the system in some way be experimenting
with a force we think might have some impact, then
watch to see what happens.”

Christopher Avery

SCRUM

SCRUM

…. hits an ideal balance between

abstract
principles

concrete
practices

SCRUM

abstract
principles

concrete
practices

SCRUM

is a lightweight framework designed to help

small, close-knit teams of people

develop complex products.

learn fast?

7 ± 2

remember
Cynefin framework

Scrum Pillars

▪ The pillars of Scrum

– Transparency

– Inspection

– Adaptation

▪ They refer to

– Process

– Results

Scrum Roles

Scrum Roles

Scrum Roles

Product Owner

• holds the vision for the product
• represents the interests of the business
• represents the customers
• owns the product backlog
• orders (prioritizes) the items in the product backlog
• creates acceptance criteria for the backlog items
• is available to answer the team members’ questions

Business objectives
Project objectives

Features
vs.

User Stories

One person?

Scrum Roles

Product Owner

18

Attributes

Available

Business-

Savvy

Communicative

Decisive

Empowered

Scrum Roles

Scrum Master

• the team’s good shepherd
• coach
• guardian
• facilitator
• scrum expert
• impediment bulldozer

is not a manager!
☺

20

Scrum Master + PM

Agile project
management

Scrum
Master

Processes Agile Values

Project
Manager

People
Product
delivery

21

Scrum Master = Servant Leader

Attributes

Listening

Empathy

Awareness

Persuasion

Conceptualization

22

Scrum Master Encourages

Sincerity

Failing &
learning

fast

Blameless
observations

23

Scrum Master Discourages

Defensiveness

Fear of
failure

CYA
Retrenching

Scrum Roles

Team Member

• responsible for completing user stories to
incrementally increase the value of the product

• self-organizes to get all of the necessary work
done

• creates and owns the estimates
• owns the “ how to do the work” decisions
• avoids siloed “not my job” thinking

The team responsibilities

Estimates Commit

Quality Deliver

Organize
themselves

The team motivation

Motivation

Feedback

Persuade

Respect

Recognize
performance

Scrum Methodology:
Artifacts

Scrum Artifacts

the tools Scrum practitioners use
to make the process visible

The Product Backlog

• the cumulative list of desired deliverables for
the product

• includes:
• features
• bug fixes
• documentation changes
• etc (anything meaningful & valuable to

produce)

Scrum Artifacts

The Product Backlog

• for each deliverable from backlog we should
know:
• Who is it for?
• What needs to be built?
• Why we should do it?
• How much work requires to implement?
• Acceptance criteria
• Priority

Scrum Artifacts

The Iteration Backlog

• (iteration vs sprint)
• all deliverables that the team has committed to

deliver this iteration
• Deliverable –unit of value /team
• Task – unit of work / person (team member)

Scrum Artifacts

No changes during a Sprint!

Scrum Artifacts

Plan sprint durations around how long you can commit to

keeping change out of the sprint!

Product Increment

• Sum of all the Product Backlog items completed
during a sprint and all previous sprints

• At the end of a sprint, the new Increment must
be Done

Scrum Artifacts

Task Board

•

▪ The Definition of Ready (DoR) sets out the criteria for the

stories needed to make the Sprint succeed

▪ The DoR is drawn up by the Development Team, cooperating

with the Product Owner

▪ The Development Team determines whether Product Backlog

items meet the DoR

▪ The PO respects the DoR. That means that a Product Backlog

item is only included in a Sprint if it meets the DoR.

Definition of Ready

Scrum Artifacts

▪ Example:

– Story Statement

– Specification by Example

– Flow chart, if needed

– Use Case, if Acceptance Criteria missing

– Wireframe, if needed, delivered

– UX [mock-up] if needed, delivered

Scrum Artifacts

Definition of Ready

• “when the code has been written” (programmer)
• “all of the tests have passed” (tester)
• “it’s been loaded onto the production servers”

(operations)
• “we can now sell it to customers“(business

person)

• Each team creates its own “definition of done”

Scrum Artifacts
Definition of Done

▪ Is a crucial tool for making sure that the developed
product is satisfying stakeholders expectations

▪ The team is only finished with a Sprint Backlog item
once it meets the DoD

▪ The DoD is drawn up by the Development Team

▪ A Definition of Done should exist for:

◼ User stories
◼ Releases

◼ Final project deliverables

Scrum Artifacts
Definition of Done

Burndown Charts

Scrum Artifacts

Burn-up Charts

Scrum Artifacts

Scrum Artifacts
Burndown Charts

Source: “The New New Product Development Game”
Takeuki, Nonaka, HBR, Jan 1986

Rather than doing all
of one thing at a time …Scrum teams do a little of

everything all the time

Sequential vs Overlapping Development

Next: Scrum Ceremonies

Scrum Methodology:
Ceremonies

Scrum Ceremonies

1. Iteration/Sprint Planning

2. Daily Scrum

3. Iteration/Sprint Review

4. Retrospective

5. Backlog Refinement (optional)

Scrum Ceremonies

▪ Rules

– Duration: timeboxed to maximum 2h/sprint week

– Participants: Product Owner and Development Team
(external stakeholders that may contribute are optional)

– Facilitator: Scrum Master

▪ Goal

– Project predictability

▪ Objectives

– To create a Sprint Backlog

– To get Team commitment for the Sprint

1. Iteration/Sprint Planning

▪ Structure

– Part 1: PO presents the Stories that are prioritized and
ready for the Sprint (half of time)

– Part 2: The Team is sizing Stories and slicing them in Tasks,
then commits to PO (half of time)

▪ Common traps

– Long and boring meetings with too detailed technical
discussions

– Superficial approach, team members do not really
understand the requirements

– Wrong and/or manipulated estimations

1. Iteration/Sprint Planning

▪ Rules

– Duration: timeboxed to maximum 15 minutes

– Participants: Development Team (PO is welcome, but
optional and must be silent)

– Facilitator: Scrum Master or a Team member

▪ Goal

– Self-organizing

▪ Objectives

– To have a common Team understanding of the Sprint
progress

– To collect impediments and decide who will tackle
each of them

2. Daily Scrum

▪ Structure

– Each Team member explains what he/she achieved since last
Daily Scrum, what he/she will work until next Daily Scrum and
what impediments prevent him/her to work (if any)

▪ Common traps

– Long and boring meetings with too detailed technical discussions

– Superficial approach, team members do not really understand
the Sprint progress

– False impediments

2. Daily Scrum

▪ Rules

– Duration: timeboxed to maximum 1h/sprint week

– Participants: PO and Development Team (stakeholders are
welcome, but optional)

– Facilitator: Scrum Master

▪ Goal

– Delivering incrementally

▪ Objectives

– To review and accept the Stories finalized by the Team

– To discuss potential changes of the Product Backlog resulting from
the Sprint Review (priorities)

3. Iteration/Sprint Review

▪ Structure

– Team is organizing a demonstration of finalized Stories

– PO is reviewing and accepting depending on DoD and
Acceptance Criteria

– PO and team discuss the results of the Sprint and the
consequences on subsequent Sprints

▪ Common traps

– Acceptance Criteria not checked during review (incomplete
testing)

– DoD ignored

3. Iteration/Sprint Review

Fast feedback

Remote driving Mars Rover
- 10 minutes to send radio signals

between Earth and Mars

3. Iteration/Sprint Review

Feedback
– Bugs

– Small cosmetic things

– New ideas

3. Iteration/Sprint Review

▪ Rules

– Duration: timeboxed to maximum 45mins/sprint week

– Participants: Development Team (PO only if invited by the Team)

– Facilitator: Scrum Master

▪ Goal

– Continuous improvement

▪ Objectives

– To review the efficiency and effectiveness of the teamwork and
methods used

– To determine and decide upon action items that will lead to
improving Team’s performance

4. Retrospective

4. Retrospective

▪ Structure

– Collecting Team member’s opinions about what they should
keep doing, stop doing or doing differently

– Discussing and collectively deciding the improvements applied
in the next Sprint

▪ Common traps

– False harmony, avoiding to discuss about “the elephant in the
room”

– Finger-pointing, personal conflicts

– Failing to identify effective action items

01

02

03

04

05

Set the stage

Encourage the people to get in the
mood for active participation

Gather data

Create a shared image of what
happened during the sprint

Generate insights

Understand implications of
findings and discussions

Decide what to do

Identify highest priority action items
that can be planned for next sprint

Close retrospective

Reflect on what helped
during the retrospective

Retrospective Structure
4. Retrospective

Set the stage

Goal: getting team members in the right mood for retrospective

Check-in

Two words summary for what they hope to
get from retrospective or how they are

feeling about retrospective

Focus on/Focus off

Discuss on terms like “Dialogue rather than
Debate” or “Conversation rather than

Argument”. Discuss what to do to move people
on the right/focus on?

ESVP

Explorers: discover new ideas
Shoppers: look over new useful ideas

Vacationers: happy to be away from work
Prisoners: forced to come to retrospective

Working agreements

Brainstorming over working agreements they
would like to put in place for the retrospective

Gather data

Goal: remembering what happened during last iteration

Timeline

Team members recall good, problematic,
significant events happened on a timeline

(happy/sad faces bottom side)

Triple nickel

Spend 5 minutes gathering at least 5 ideas
related to a specific issue. Team is divided in

groups of 5 if team is bigger than 7. Pass
written issues to the right and give another 5

minutes to reflect and expand the ideas

Others

Mad-Sad-Glad,
Satisfaction histogram,

Team radar etc

Follow-up

Discuss the success or failure of
improvement actions decided during

previous retrospective

Gather data

Generate insights

Goal: identifying potential improvements of collaboration and teamwork

Brainstorming

Quiet writing: silent writing of ideas
Round-robin: pass token around the group

Free-for-all: ad-hoc information generation

5 Whys

Ask why five times
to discover cause-and-effect relation

Fishbone

Visual tool to display
root cause analysis of problems: procedures,

policies, system, skills etc

Decide what to do

Goal: deciding on actionable improvements for the next iteration

Short subjects

Start doing
Stop doing

Continue doing

SMART goals

Specific, Measurable,
Attainable, Relevant,

Timely

Dot voting

Prioritize potential improvements
and focus on

most relevant 2-3 actions

Close retrospective

Goal: ending retrospective and conclude upon its success

Plus/Delta

Plus: what is going well in retrospectives?
Delta: what should we change?

Helped, Hindered, Hypothesis

Helped: what is going well
Hindered: what was a hindrance

Hypothesis: ideas of improvement

Return on time invested

Feedback focused on how
people believe their

time was spent

Process Technical

What we are going to change
What we expect to happen
Who is responsible to implement it

4. Retrospective

▪ Rules

– Duration: timeboxed to a duration negotiated by PO and Team

– Participants: PO and Development Team

– Facilitator: Scrum Master

▪ Goal

– Improving the planning process

▪ Objectives

– To communicate significant changes in the Product Backlog

– To slice backlog items that are too big, then optionally to roughly
estimate the resulted Stories

– To collect questions about the Stories that are prioritized for next
Sprint

5. Backlog Refinement (Grooming)

▪ Structure

– Flexible agenda, proposed by Product Owner

▪ Common traps

– Getting into too detailed discussions about
backlog items

– Slicing backlog items using technical criteria
(Technical Stories instead of User Stories)

5. Backlog Refinement (Grooming)

User stories

• A user story is one or more sentences

in the everyday/business language

that captures what a user does or needs to do +

• a description

• acceptance criteria

• Format:

As a type of user,

 I {want / can / need / am required to} <some goal>

 so that <some reason>

User stories

User stories

As a user I want to spell

check a document so that

my document does not

contain spelling errors
A user can spell check a

document

Spell check document

User stories

As a user I want to rent a

dog
The system shall allow a

user to rent a dog

•Independent – allow to reprioritize in any order

•Negotiable – discuss and make tradeoffs

•Valuable – clear business benefits

•Estimable – team is able to estimate the effort

•Small – easier to estimate and test

•Testable – how do you know when it is done?

INVEST mnemonic

Independent

As a customer I can pay

for the items in my cart

with Visa

As a customer I can pay

for the items in my cart

with a MasterCard

As a customer I can pay

for the items with an

American Express card

3

1
1

Independent

As a customer I can pay

with a credit card

5

Option 1. Combine the stories

- must support Visa, MasterCard and

American Express

Independent

As a customer I can pay

with a first type of credit

card

3

Option 2. Split across a
different dimension

As a customer I can pay

with two additional

types of credit cards

2

Independent

Option 3. Write two estimates
As a customer I can pay

for the items in my cart

with Visa
As a customer I can pay

for the items in my cart

with a MasterCard

As a customer I can pay

for the items with an

American Express card

3 if done 1st
1 otherwise

3 if done 1st
1 otherwise

3 if done 1st
1 otherwise

As a programmer I need to

code the infrastructure for

processing credit card

Independent

Option 4. Extract technical
commonalities

As a customer I can pay

for the items in my cart

with Visa As a customer I can pay

for the items in my cart

with a MasterCard

As a customer I can pay

for the items with an

American Express card

Negotiable

As a customer I can pay

with a credit card

- must support Visa, MasterCard and

American Express

Valuable

As a parent, I want to

restrict my child to only

using apps appropriate for

children of a certain age

As a system administrator,

I want all configuration

information for all users

stored in a central location

•The story is too big

•Too much is unknown about the story

•Developers lack domain knowledge

•Developers lack technical knowledge

Estimable / Estimatable

Small / Sized appropriately

Epics

a story that is bigger

than one team can do in

one iteration

As a user, I want to run

reports.

Testable

As a user, I find the system

easy to use.

As a novice user, I can

complete common

operations without training

As a user, I never have to

wait long for a screen to

appear

INVEST mnemonic

When to write user stories?

• Randomly, whenever a new idea occurs

• During sprint review meetings

• During product backlog refinement /

grooming meetings,

• During story-writing workshops

When to write user stories?

• Minimum Viable Product (MVP)
• the version of a product which allows a team to collect the

maximum amount of information with the least effort

• Minimum Marketable Feature (MMF)
• A chunk of functionality that delivers a subset of the

requirements, and that is capable of returning value to the

customer when released as an independent entity

Splitting user stories

Different
priorities

Lack of
time

Too big

SPIDR approach to splitting user stories

Splitting stories with spikes

As a member, everything I

click on is tracket by the

Super Marketing

Automation System
Research on Super

Marketing Automation

System

10 hours

Splitting stories along paths

User story 1 - First “bite”
Phone call, assign technician using Excel, order
materials, email confirmation

User story 2 - Second “bite”
Phone call, assign on calendar, assign materials
ased on a buffer stock, email confirmation

User story 3 - third “bite”
etc

As a user I want to be

informed about my

request so that I can

manage my schedule

Hamburger technique

Splitting stories by interface

As an iOS user, I can do

whatever-it-is

As an Android user, I

can do whatever-it-is

As a web user, I can do

whatever-it-is

Splitting stories by data

Choose
departure and

destination
airports

Display
available

flights

Specify
departure date

Specify price
limits

Specify
preferred

airlines

Specify
maximum
number of

connections

User story 1

User story 2

User story 3

User story 4

As a passenger I want to look for

the most suitable flights so that I

can reach the destinations I

choose in optimal conditions

Splitting stories by business rules

User story 1 – Cancel a request with no restrictions
Simply cancels the request

User story 2 - Cancel a request with an assigned
technician
Cancel request and change technician allocation

User story 3 – Cancel a request after materials are
ordered
Cancel the request and manage the financial implications

As a user I want to
cancel my intervention
requests so that I can
give up the requested
services

Closed stories

A closed user story is one that finishes with the user having
achieved a meaningful goal.

As a recruiter I can

manage the job ads I’ve

placed

Review resumes

Change expiration date

Modify job description

Delete an application

Three steps when you can’t split a story

1. Try harder
2. Let it take more than one iteration
3. Feel guilty

Source: Mike Cohn, Splitting user stories

Estimations in Agile

What is estimation?

GUESS
when...

MEASURE
when...

ESTIMATE
when...

I have no idea what
this is about

I've never done
anything like this

before

I have an idea
about the
approach

I did similar things

I know exactly how to
approach it

I've done exactly the
same thing before

EXPERTISE

EXPERIENCE

Cambridge Dictionary: a guess or calculation about the cost, size, value, etc. of something

▪ How long a user story will take (effort) in relative.

▪ Influenced by complexity, uncertainty, risk, volume of work etc

Story points
Sp

ri
n

t
p

la
n

n
in

g

▪ Estimation technique that ranks stories by their size relative to each other

and estimates based on those rankings.

▪ Story points are typically expressed using the Fibonacci sequence of numbers

– Using this technique the estimation would be quick because one story it not
evaluated from the scratch, it is evaluated by its position relative to other
stories

– It is useful when planning for the next iteration to decide which stories can be
completed in that iteration

▪ Guidelines:

– The team should own the definition of story points

– Story points definition should be all-inclusive

– Point sizes should be relative

– When disaggregating, totals don’t need to match

– Estimate should include complexity, effort and risk

Relative sizing and story points

▪ Planning poker is a consensus-based estimation technique,

mostly used to estimate effort or relative size of user stories.

After each player has selected a card, all cards are exposed at

once and consensus is reached in steps.

▪ Advantages:

▪ Minimizing the “bandwagon effect”

(grouping around most popular opinion)

▪ Preventing HIPPO decision making

(Highest-Paid Person Opinion)

▪ Minimizing the “groupthink” effect

(excessive concern for group harmony)

Poker planning

▪ Diversity of opinion

▪ Independence

▪ Decentralization

▪ Aggregation

▪ Trust

Wisdom of Crowds

Planning Poker

▪ Diversity of opinion

▪ Independence

▪ Decentralization

▪ Aggregation

▪ Trust

Wisdom of Crowds

Velocity
Sc

ru
m

 B
as

ic
s

• The sum of the effort estimates associated

with user stories that were completed during

that iteration

Velocity

Velocity
No of

historical
iterations

Iterations to
throw out
from each

end

0-7 0

8-10 1

11-12 2

13-15 3

16-17 4

18-20 5

21-22 6

23-25 7

26+ 8

Sorted
velocities

27

34

35

38

39

40

40

41

45

90%
confidence

interval

Extrapolate the velocity range

5 * 34 = 170 story points – “We’ll be at least here in 5 sprints”

5 * 41 = 205 story points – “We might be here in 5 sprints”

90%

5%

5%

Will have

Might have

Won’t have

Accuracy vs Precision

“It is better to be
roughly right than
precisely wrong”

J.M. Keynes

White Elephant Sizing

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

XS S M L XL

Prepare a set of user stories

1

Organize a workspace with
t-shirt sizes as columns

2

Ask the project team to estimate
each user story through
placing it on a column

3

Answer the questions asked
 by the team, but don't go

into too much detail

4

White Elephant Sizing

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

XS S M L XL
Prepare a second round using

the Fibonacci sequence

5

Ask the project team
 to refine the estimates

6

Calculate the total size of the
project user stories

7

Calculate the time
estimated to complete

using tolerance intervals

8

1 2 3 5 8 13 20 40 60 100

1 10 12 25 40 39 40 40 120 100

TOTAL 427 SP

±25% => interval [254, 424]

342 - 512 SP

Affinity estimation

Affinity estimation

Affinity estimation

◼ ….

1 3 4 8 12

Velocity prediction

18

Velocity prediction

User story 1 User story 2 User story n
User story

n+1

User story
t

Commitment

…

Stretch stories

…

34

eXtreme Programming 1

XP is…

…. a lightweight software development

methodology for small to medium sized teams

developing software in the face of t vague or rapidly

changing requirements”

Kent Beck

XP is…
…. a lightweight software development

methodology

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

Scrum

XP

Crystal Model Driven
Architecture

XP is…

…. a lightweight software development

methodology

Extreme?

code

review

architecture

Is it

good?

Let’s do it

often
planning simplicity

testing

integration

testing
Is it

important?

Mentality of sufficiency

How would you program if you had all

the time in the word?

• Write tests

• Restructure often

• Talk with teammates and customer often

XP Paradigm

Stay aware.

Adapt.

Change.

XP - Values

Communication

Simplicity

Feedback

Courage

Respect

constantly
communicate with the
customers and fellow

programmers

XP - Values

Communication

Simplicity

Feedback

Courage

Respect

keep design
simple and

clean

XP - Values

Communication

Simplicity

Feedback

Courage

Respect

get feedback by
testing the
software

starting on day
one

XP - Values

Communication

Simplicity

Feedback

Courage

Respect

deliver the system to
the customers as

early as possible and
implement changes

as suggested

XP - Values

Communication

Simplicity

Feedback

Courage

Respect

show respect for
the unique

contributions of
each and every
team member

XP - Principles

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

get the feedback,
understand it, and

put the learning back
into the system as
quickly as possible

• Works as a catalyst for change
• Indicates progress
• Gives confidence to the developers that

they are on the right track

20

XP - Principles

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

to treat every
problem as if it can

be solved with
simplicity

''Do the simplest thing that could possibly work'‘
KISS (“Keep It Simple, Stupid”
YAGNI (“You Aren’t Going to Need It”)

XP - Principles

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

any problem is
solved with a series

of the smallest
change that makes a

difference

•The design changes a little at a time.
•The plan changes a little at a time.
•The team changes a little at a time.

XP - Principles

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

the best strategy is the
one that preserves the

most options while
actually solving your

most pressing problem

XP - Principles

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

The team members
try to produce the

quality that they are
proud of

The team:
Works well
Enjoys the work
Feels good in producing a product

of value

12 Original XP Practices

Pair Programming

Testing

Simple Design

Planning Game

Refactoring

Coding Standards

Collective Ownership

Continuous
Integration

System Metaphor

40-hours Week

Small Releases

On Site Customer

12 Original XP Practices

Pair Programming

Testing

Simple Design

Planning Game

Refactoring

Coding Standards

Collective Ownership

Continuous
Integration

System Metaphor

40-hours Week

Small Releases

On Site Customer

Collective Ownership

Pair Programming

Testing

Coding Standards

Some practices, if applied in isolation, could bring chaos

Refactoring Refactor Mercilessly Design Improvement

Evolution of some practices in time

12 Original XP Practices

Testing
Testing First

Programming
Test Driven

Development

On Site Customer Whole Team

40-hours Week Sustainable Pace

Pair Programming

•Technique that requires 2 people, 1 computer

DRIVER:

➢ Controls the keyboard

➢ Writes the code and tests

➢Tactics (how?)

NAVIGATOR:

➢ Has the role of reviewer

➢ Guides the driver

➢ Strategy (what?)

Important: they switch roles!!!

When to use it?

• When mentoring new hires

• For extremely high-risk tasks

• At the start of a new project

• When adopting a new technology

Benefits

• Better code, design

• Fewer bugs

• Higher morale

• Shared perspectives and knowledge

• Better time management

• Higher productivity

!!! All without sacrificing productivity

How to do it better?

• Have a well-defined task

• Define a goal at a time

• Rely, support and synchronize with your
partner

• Pair with everyone in the team

• Be physically comfortable

• Give everyone a chance to be an expert

Important: communicate!!!

Proxemix
= the study of human use of space

Intimate distance (for embracing, touching or whispering)

15 cm - 46 cm

Personal distance (for interactions among good friends or family)

46 to 122 cm

Social distance (for interactions among acquaintances)

1.2 - 3.7 m

Public distance (used for public speaking)

3.7 to 7.6 m

eXtreme Programming
2

2

Extreme Programming

Effective
Practices

Extreme Programming
Practices

Pushed to the
extreme

Code reviews Pair programming

Testing
Unit testing &

Continuous regression

Design Persistent refactoring

Simplicity
Simple design & code

code only that is required

Short iterations The planning game

4

Planning Game

Business and development need to make the decisions in

tandem

Business people need to decide about

– Scope: How much of a problem must be solved for the system to be
valuable in production?

– Priority: If you are given an option, which one do you want?

– Composition of releases: How much or how little needs to be done
before the business is better off with the software than without it?

– Dates of releases: What are important dates at which the presence
of the software (or some of the software) would make a big
difference?

5

Planning Game

Technical people need to decide about

– Estimates: How long will a feature take to implement?

– Consequences: There are strategic business decisions that should be
made only when informed about the technical consequences.
Development needs to explain the consequences.

– Process: How will the work and the team be organized? The team
needs to fit the culture in which it will operate. The software must be
written well rather than preserve the irrationality of an enclosing
culture.

– Detailed scheduling/Risk priority: Within a release, which stories should
be done first?

6

Planning Game

7

Small Releases

The only way to ensure that you are developing

the software the customer expects!

Every release could be used as a checkpoint to

measure the estimation accuracy.

8

Small Releases

Fail Fast

Fail Often

• Product Roadmap =

visual overview of a product’s releases
• Product roadmap = sequence of releases

• Release = sequence of iterations

• Iteration = set of user stories / features

9

Small Releases

• Story Map (developed by Jeff Patton)

• Helps select and group features for a release

• Backbone – essential functionality

• Walking skeleton – smallest system that could
possible work

• Optional features

10

Small Releases

11

Small Releases

Workflow sequence

The
Backbone

Walking
Skeleton

More
Optional

Less
Optional

12

Small Releases

Workflow sequence

The
Backbone

Walking
Skeleton

More
Optional

Less
Optional

First Release

Second Release

Third Release

13

Metaphor

A good metaphor is a powerful aid in unifying

the technical and business teams

The team evolves its own form of “tribal
language”, used to describe user stories and

development

14

Metaphor

“. . . I still haven't got the hang of this metaphor

thing. I saw it work, and work well, on the C3 project,

but it doesn't mean I have any idea how to do it, let

alone how to explain how to do it”

Martin Fowler

15

Metaphor

'Metaphor' seems to be one of the least understood

precepts of XP although its supposed to be (one of)

the most important.

16

Metaphor

Metaphor is something you start using when your

mother asks what you are working on and you try to

explain her the details.

How you find it is very project-specific.

Use your common sense or find the guy on your

team who is good at explaining technical things to

customers in a way that is easy to understand.

17

Simple Design

XP definition for simplicity:
• Runs all the tests
• Contains no duplicate code
• States the programmer’s intent for all the

code clearly
• Contains the fewest possible classes and

methods

18

Simple Design

No big design upfront!

1. Only do what you need to do now!

2. Don't add anything because you think you might need it!

19

Refactoring

Refactoring is the technique of

improving code without changing

functionality
Why?

Because your code should be the
simplest thing that could possibly work

1) Lack of tests

2) Name not from domain

3) Name not expressing intent

4) Unnecessary if

5) Unnecessary else

6) Duplication of constant

7) Method does more than one thing

8) Primitive obsession

Source: Brutal Refactoring Game, Adi Bolboaca20

Refactoring

9) Feature envy

10) Method too long (> 6 lines)

11) Too many parameters (> 3)

12) Test – not unitary

13) Test – setup too complex

14) Test – unclear Act

15) Test - more than one assert

16) Test – no assert

17) Test – too many paths

Testing

Unit testing

Acceptance testing

Test Driven Development

Testing First
Programming

Test Driven
Development

Testing

- Add a test, get it to fail, and write code to pass the test
- Remove duplication

Testing First
Programming

Test Driven
Development

• Think about what you want to do.
• Think about how to test it.
• Write a small test. Think about the desired API.
• Write just enough code to fail the test.
• Run and watch the test fail. Now you know that your test is

going to be executed.
• Write just enough code to pass the test (and pass all your

previous tests).
• Run and watch all of the tests pass. If it doesn't pass, you did

something wrong, fix it now since it's got to be something you
just wrote.

• Refactor the code
• Run the tests again
• Repeat the steps above until you can't find any more tests

that drive writing new code.

Testing

if you can't do these,
you probably shouldn't start

writing any code

Testing First
Programming

Test Driven
Development

24

Testing
Testing First

Programming
Test Driven

Development

25

Collective Ownership

Any person can change

the application code

at anytime

The catch: If you own all the code, you are

responsible for all the code as well

26

Continuous
Integration

The longer the time period between

integrations, the more conflicts you'll see,

and the effort to integrate will increase.

The process: developers work on tasks until

complete, integrate them, run tests, fix

problems

10-minute
Build

27

40-Hour Work Week

You cannot maintain quality with

overtime-heavy teams!

Each country or culture has differing

acceptance of reasonable working hours

Sustainable Pace

28

40-Hour Work Week Sustainable Pace

29

On-Site Customer

Benefits

 Simple Problem Solving

 Avoid Misunderstanding

 Immediate answers

 Team Spirit

Whole team Sit together

30

On-Site Customer

The customer must be on the project full-time

for the duration and be located on-site with

the team

The customer could include users, business

experts, and any other customer-side

resource

Whole team Sit together

31

Coding Standards

Mandatory — Those standards to be adhered to by all team
members.

Guidelines — Those considered best or good practice and often
describe the general approach toward development.

Recommendations — These rules are considered good practice
and should be used at all times unless there are exceptional

circumstances where valid justification can be given.

There are two types of people:

Coding Standards

If (Condition)

{

Statements

/*

…

*/

}

If (Condition){

Statements

/*

…

*/

}

33

Coding Standards

Types of coding standards:

• Formatting

• Code structure

• Naming conventions

• Error handling

• Comments

Source: Extreme Programming, tutorialspoint34

Extreme Programming Process Cycle

3514th Annual State of Agile Report, May 26th 2020
https://stateofagile.com

https://stateofagile.com/

Why XP is not popular?

36

• It is software engineering centric

• It requires high investment

• Rockstar developers

• Trainings

• Infrastructure (automation solutions)

• Culture

• It is irrational (to business people)

• Unit tests, Test First Development, Story Points, Pair
Programming

• It is too difficult

• Test First Development, Refactoring, Simple & Emergent
Design

Lean Software Development

Agile

- Adaptive to change

- Shorter planning and
commitment cycles

- Focus on collaboration
and interaction

Lean

- System view of value
stream

- Identify ways to eliminate
waste

- Limit work queues

Agile & Lean Commonalities

- Improve quality

- Amplify learning

- Continuously improve

- Empower people

"Think big, act small, fail fast; learn rapidly"

A Lean History

• Lean is a manufacturing & production practice that
considers the expenditure of resources for any goal
other than the creation of value for the end
customer to be wasteful, and thus a target for
elimination

• "value" is defined as any action or process that a
customer would be willing to pay for

A Lean History

• Lean is centered around preserving value with
less work

• Lean manufacturing is based on
• optimizing flow,
• increasing efficiency,
• decreasing waste,
• using empirical methods to decide what matters,

rather than uncritically accepting pre-existing ideas

• Toyota was a leader in implementing lean
practices in the 80s

9

Taiichi Ohno
Toyota Production System

12

Toyota Production System :

How could Toyota make cars in small quantities
but keep them as inexpensive as mass-
produced cars?

“Just-in-time” manufacturing

“Don't decide what to

manufacture until you have a

customer order; then make it as

fast as possible”

Case Study: Statewide Automated Child Welfare
Information System (SACWIS)

• Florida: started in 1990, estimated 8 years and $32
million

• In 2002 Florida spent $170 million and estimated to be
completed in 2005 with $230 million

• Minnesota: started in 1999
• completed in 2000 at cost of $1.1 million

• Why? Standardized infrastructure, minimized
requirements, team of 8 capable people

Source: Standish Group

Lean Principles for Software Development

1

2

3

45

6

7

Lean Principles are… just Principles

• Eliminate waste does not mean throw away all documentation.

• Empower the team does not mean abandon leadership.

• Deliver as fast as possible does not mean rush and do sloppy

work.

• See the whole does not mean ignore the details.

• Build integrity in does not mean big, upfront design.

• Decide as late as possible does not mean procrastinate.

• Amplify learning does not mean keep on changing your mind.

1. Eliminate waste

If developers code more features than are immediately needed, that is waste

Handing off development from one group to another is waste

If a development cycle has collected requirements in a book gathering dust, that is waste

Whatever gets in the way of rapidly satisfying a customer need is waste.

The Seven Wastes of Manufacturing

• Inventory

• Extra Processing

• Overproduction

• Transportation

• Waiting

• Motion

• Defects

Shigeo Shingo, Toyota

Partially Done Work

Extra Processes

Extra Features

Task Switching

Software Development

WASTE

=

everything your organization does to

develop software that is not analysis or

coding.

Eliminate waste

It is usually easier to see waste in a crisis

26

"There is nothing so
useless as doing
efficiently that
which should not be
done at all"

Peter Drucker

Eliminate waste

1. Implementing lean development is learning to see waste.
2. Uncover the biggest sources of waste and eliminate them.
3. Uncover the biggest remaining sources of waste and eliminate

them.
4. Do it again.

After a while, even things that seem essential can be gradually
eliminated

Eliminate waste

Value Stream for Cola Cans

•

James P. Womack, Daniel T. Jones (1997)

Value Stream for Cola Cans

•

James P. Womack, Daniel T. Jones (1997)

- 319 days to move from the mine to consumption
- 3 hours is the time while value is actually being added

(0.04% of total time)

Aluminum cans have to be a very stable industry
to be able to tolerate such a long value stream

…not working for personal computers

“8 days of inventory – competitors 40 days.
If Intel comes out with a new chip, I am going to
get that to the market 32 days sooner.”

Michael Dell

31

32

33

Eliminate waste

How to eliminate waste:
• Make a list of the 10 or 15 most important activities in your

organization

• Rate 1-5 (1 customer do not care about , 5 customers value
it highly)

• Develop a plan to cut those with 1 or 2 points

Eliminate waste

How to eliminate waste:

Develop a value stream map

Take the biggest cause of delay and plan to cut it in half

Eliminate waste

How to eliminate waste:

Seven meetings talk about the wastes in software development:
• Do you agree that this is waste? Why?
• How much time it consumes in avg / week
• What can we do to reduce that time

Eliminate waste

3. Deliver as fast as possible

• Customers like rapid delivery

• Rapid delivery means less time for customers
to change their minds

• In-process, or partially done work can have
undiscovered defects

• Deliver as fast as possible complements decide
as late as possible: the faster you can deliver,
the longer you can delay decisions.

Push versus Pull

Kitchen Shelves CounterCook Seller Customer

Producing based
on forecast

Pushing the stock
to the customer

Kitchen Shelves CounterCook Seller Customer

Adaptation On demand
production order

Sales
forecast

Customer
needs

3. Deliver as fast as possible

6. Decide as late as possible

In an evolving market, keeping
design options open is more
valuable than committing early.

How to avoid change penalties?

• Traditional: make the right design decision in
the first place and avoid the need to change
later

• Lean: Don't make irreversible decisions in the
first place; delay design decisions as long as
possible, and when they are made, make them
with the best available information to make
them correctly

• The last responsible moment:

• delay commitment until the last
responsible moment, that is, the
moment at which failing to make a
decision eliminates an important
alternative.

6. Decide as late as possible

Other Agile Methodologies
& Practices

Most common Agile Methodologies

• Scrum

• XP

• Kanban

=> Lean

15th Annual State of Agile Report, 2021
https://stateofagile.com

https://stateofagile.com/

Most common Agile Methodologies

• Feature-Driven Development

• Agile Unified Process

• Crystal

• DSDM

• Disciplined Agile

• Scaled Agile Framework

15th Annual State of Agile Report, 2021
https://stateofagile.com

https://stateofagile.com/

6

Feature Driven Development
(FDD)

Feature Driven Development (FDD)

• Iterative/incremental software process

• Developed in 1997 by Jeff De Luca

• Domain Model is the core of FDD

(no specific values / principles defined)

Feature Driven Development (FDD)

Requirements are gathered using a top-down

approach

• Subject Areas (general business practices)

• Feature Sets (business activities)

• Features (tasks)

Typically 2 week iterations

Feature Driven Development (FDD)

9

Feature Driven Development (FDD)

Everything is

planned,

designed,

built,

managed

at the feature level.

Feature Driven Development (FDD)

• Formula for defining features:

< action > < result > [of | to | for | from] < object >

“Calculate monthly payment for car loan.”

Feature Driven Development (FDD)

Roles:

• Project Manager –administrative, financial, reporting responsibilities

• Chief Architect –controls the design of the Domain Model manages the technical
architecture, design sessions, and code reviews.

• Development Manager – manages daily development activities, coordinates the
development team

• Chief Programmer –senior developer who is responsible for a specific Feature Set and
manages their design and development activities.

• Class Owner –developer who reports to the CP and designs, codes, tests, and documents
features

• Domain Expert – defines requirements as features that the solution must provide.
Business analysts are the most common Des

• Tester – is responsible for validating that features perform as defined.

• Deployer – manages the data definitions and conversions and supports the deployment
of code to the various platforms.

• Technical Writer – creates and maintains the documentation for users.

Feature Driven Development (FDD)

Parking Lot Chart

A visual, low maintenance way to
report the progress of feature sets

Feature Driven Development (FDD)

The exact state of each feature is documented

in a table with six specific milestones

• Domain Walkthrough

• Design

• Design Inspection

• Code

• Code Inspection

• Promote to Build

15

Agile Unified Process

Agile Unified Process

“Three Amigos” “: Grady Booch, James Rumbaugh, Ivar Jacobson

Early 90’s: Unified Modeling Language (UML)

Founders of Rational Software Corporation (today division of IBM)
16

Agile Unified Process

= simplified version of Rational Unified Process

(EssUP – Essential Unified Process – first attempt to simplify RUP by I.

Jacobson)

• “high ceremony” framework

• based on integration of different agile

concepts and techniques

Agile Unified Process

6 philosophies

• Competence – The team knows what it’s doing. They won’t read detailed
process documentation, instead will apply high-level guidance and standards.

• Simplicity – Describe things concisely on a few pages, not reams of pages.

• Agility – Conforms to the values and principles of the Agile Alliance.

• Activity – Focus on only the high-value activities that count. Ignore the noise.

• Tools – Simple tools are often the best. Recommends using the tools best
suited for the job.

• Tailor – AUP works best when tailored to the needs defined by the context.

Agile Unified Process

Phases

• Inception – cultivates a shared understanding of the project scope
and defines architectural choices.

• Elaboration – develops the understanding of the system into
requirements and validates architectural choices.

• Construction – occurs until system development is completed.

• Transition – all testing and system deployment to production.

Agile Unified Process

Disciplines

• Model – Use a model to represent the organization’s business approach, the problem
domain, and any viable solution to solve the problem.

• Implement – Code the model(s) into executable code and perform unit testing.

• Test – Apply additional tests to find defects, validate the system design works, verify the
requirements are satisfied, and ensure code quality.

• Deploy – Plan and deliver the system for end users.

• Configuration Management – Control all project artifacts, including version tracking and
change management.

• Project Management – Provide project management, including scope, resource, risk and
progress management, and coordination of external interfaces, to achieve an on time, on
budget completion.

• Environment – Provide process guidance standards and ensure needed tools are available
for the team

Agile Unified Process

21

22

Crystal

Crystal

• Alistair Cockburn, 2004

• Family of frameworks

• based on size & criticality

• not upward/downward
compatible

Crystal

Key Principles

• Frequent Delivery: Project owners/customers can expect deliverables from the team(s)
every couple of months.

• Continual Feedback: The entire project team & stakeholders meets on a regular basis to
discuss project activities.

• Constant Communication: Teams co-located in the same room/facility. All projects expect
to have frequent access to the person(s) defining the requirements.

• Safety: 1. The safe zone that team members must have to be effective and to
communicate truth during the project.
2. Evaluate how software projects affect the safety of their end-users.

• Focus: There should be enough time to complete priority items each without interruption.

• Access to Users: Project team will have access to one or more users of the system being
built.

• Automated Tests and Integration: Controls must be put in place to support versioning,
automated testing, and frequent integration of system components.

Crystal

• Size: number of people involved in the

project.
• Bigger size – more formality to the structure, artifacts

and management

• Criticality: the potential for the system to

cause damage
• More critical: increase the rigidity of the project needs

Crystal

Crystal Clear

• Has the fewest defined roles:
• Sponsor
• Senior Designer
• Programmer

• Roles of project manager, business analyst,
tester, etc. are shared among all team
members.

• The expected release is every 60 or 90 days

• Minimal documentation (project milestones)

Crystal Orange

• Roles:
• Sponsor

• Project Manager

• Business Analyst

• Architect

• Senior Designer

• Programmer

• Tester

• The expected release is every 90 or 120 days

Crystal Orange (cont)

• Specific Deliverables:

• Requirements Document

• Release Sequence (Schedule)

• Project Schedule

• Status Reports

• UI Design Document (if needed)

• Object Model

• User Manual

• Test Cases

30

Dynamic Systems
Development Method

DSDM

Dynamic Systems Development Method

• UK, 1990,

• DSDM Consortium (manages DSDM framework
versions)

• Mot popular Agile methodology practice in UK

• Developed as an extension for RAD (Rapid
Application Development)

• One of the heavier Agile approaches

Dynamic Systems Development Method

• Principles

• Focus on the business need

• Deliver on time

• Collaborate

• Never compromise quality

• Build incrementally from firm foundations

• Develop iteratively

• Communicate continuously and clearly

• Demonstrate control

Dynamic Systems Development Method

• Phases:

• Pre Project: Things that need to occur before the project begins.

• Project Lifecycle: The actual project occurs. This phase is broken
into five stages:

– Feasibility Study
– Business Study
– Functional Model Iteration
– Design and Build Iteration
– Implementation

• Post Project: Things that need to occur after the project has
been completed.

Dynamic Systems Development Method

34

35

Scaled Agile Framework
SAFe

36

37

SAFe Specifics

38

SAFe Specifics

• ART = a team of (cross-functional) teams

• Common cadence

• Agreement inside ART on the meaning of

story points

“Your Customer is whoever consumes your

work.”

• Program Increment planning: each 5 iterations

• Prioritization is done based on Cost of Delay & Weighted Shortest Job First

39

SAFe Specifics

40

SAFe Specifics

41

Modern Agile

42

Modern Agile is a community for
people interested in uncovering
better ways of getting awesome
results. It leverages wisdom from

many industries, is principle driven
and framework free.

Joshua Kerievsky, CEO, Industrial Logic

2015 – Joshua Kerievsky

modernagile.org/

43

http://modernagile.org/

44

The Heart of Agile

45

46

47

The Heart of Agile

2015 – Alistair Cockburn

heartofagile.com/

https://heartofagile.com/

48

Other (extreme)
Agile practices

@ITCAMPRO #ITCAMP17

#NoEstimates

Woody Zuill

Vasco Duarte

@ITCAMPRO #ITCAMP17

#NoEstimates

ESTIMATIONS

NO
ESTIMATES

@ITCAMPRO #ITCAMP17

#NoEstimates

@ITCAMPRO #ITCAMP17

#NoEstimates

@ITCAMPRO #ITCAMP17

#NoBacklog#NoBacklog

Iteration

Release

Future Releases

PRIORITY

@ITCAMPRO #ITCAMP17

“Most backlogs are waste.

Estimating backlog items is therefore super-waste.

Revisiting backlog estimates are in

mentally-deranged territory”

Paul Klipp

#NoBacklog

Kanban
part 1

Kanban
=

“signal card”

Limits
work in progress

(WIP)

• Kanban systems ⊂ Pull systems
• Systematic way to achieve a sustainable pace of work

• An approach to introducing process changes that would
meet with minimal resistance

• Kanban requires that process policies are

defined explicitly

• First virtual Kanban system for software

engineering: 2004, Microsoft

9

Recipe for success

• Focus on Quality

• Reduce WIP

• Deliver Often

• Prioritize

• Attack sources of variability

to improve predictability

Kanban delivers all of them!

Cumulative Flow Diagram

11

1. Longer lead times seem to be associated with
significantly poorer quality!
2. Great amounts of WIP -> Longer lead times

Conclusion

• Reducing work-in-progress, or

shortening the length of an

iteration, will have a significant

impact on initial quality.

Also…

• Frequent releases build trust

• The throughput of a process is constrained by a

bottleneck.

• It’s unlikely we know where that bottleneck is. (all claim

to be completely overloaded)

• When limiting the work-in-progress within => only the

bottleneck resources will remain fully loaded.

• The other workers in the value stream will find they

have slack capacity.

15

2004 - developed upgrades & fixed production
bugs

for about 80 cross-functional IT applications used
by Microsoft

16

17

An average request took 11 days of engineering!!!

More than 90 percent of the lead time was queuing,

or other forms of waste.

The estimation effort was consuming 33-40% of

capacity

18

20

<

•

The backlog was eliminated entirely on November 22, 2005!

14 days

Conclusions after implementing first
Kanban System

Kanban:

• enables incremental changes

• enables change with reduced political risk

• enables change with minimal resistance

• will reveal opportunities for improvement that do
not involve complex changes to engineering
methods

Changes can take time to take full effect!

23

Control/Influence

NegotiateNegotiate

Analysis
Design
Coding
Testing

Requirements
prioritization

Portfolio
management

System
Operations

Kanban

is an approach that drives change

by optimizing

your existing process.

25

Performance Management
in Agile Teams

Project performance

Favorable conditions

Interesting project
Involved customer

Mature team

Unfavorable conditions

Unappealing project
Disengaged customer

Junior team
New technology
High-risk domain

CHALLENGES
Because of ...
It will/might happen that
Leading to ..

condition (cause)

trigger

effect

Risks

Probability of condition < 100%

Probability of trigger = 100%

Strategy: mitigation, contingency, transfer

Assumptions

Probability of condition < 100%

Probability of trigger < 100%

Strategy: constant checking

Issues

Probability of condition = 100%

Probability of trigger = 100%

Strategy: solve

Constraints

Probability of condition = 100%

Probability of trigger < 100%

Strategy: adapt

Types of challenges

Approach

SYMPTOMS
How it manifests ,
what are the main
perceivable effects

DIAGNOSTIC
How we may diagnose
the nature and severity

of the challenge

CAUSES
What are the most

probable root causes
for the symptoms

SOLUTIONS
What can be done to
address the challenge
or remove the cause

Most frequent symptoms

Fluctuant
velocity

Over
commitment

Poor
quality

Excessive
changes

Symptoms

Low
velocity

Superficial testing
Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Team is pushed by someone/something
Defective sprint planning
Sprint backlog not protected
Internal and external dependencies

Poor estimation technique/skills
Lack of skills complementarity

Poor story splitting
Poor Definition of Ready

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Poor Product Ownership
Lack of a shared vision

Real stakeholders not involved
Inattention to good design

Most frequent symptoms

Fluctuant
velocity

Over
commitment

Poor
quality

Excessive
changes

Symptoms

Low
velocity

Superficial testing
Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Team is pushed by someone/something
Defective sprint planning
Sprint backlog not protected
Internal and external dependencies

Poor estimation technique/skills
Lack of skills complementarity

Poor story splitting
Poor Definition of Ready

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Poor Product Ownership
Lack of a shared vision

Real stakeholders not involved
Inattention to good design

Low velocity (compared to project complexity)

Demotivated
team members

Poor story
writing skills

Poor team
collaboration

High percentage
of juniors

Sometimes an issue or risk,
sometimes a constraint

Face-to-face talking
Direct observation

Seek for deeper cause
Align project & team goals

Usually a constraint,
sometimes an issue

Always an issueAlways an issue

Examine team CVs
Direct observation

Check INVEST rules
Check acceptance criteria

Apply Gemba (mingle)
Attend daily standups

Apply value stream mapping
Maintain a stable team core

Story writing meetings
Use business analysis skills

Don’t adapt, solve it!Don’t adapt, solve it!

Get external mentoring support
Replace some team members

Manage stakeholders
expectations

Manage stakeholders
expectations

DIAGNOSING

CLASSIFYING

SOLVING

ADAPTING

Fluctuant
velocity

Most frequent symptoms

Over
commitment

Poor
quality

Excessive
changes

Symptoms

Low
velocity

Superficial testing
Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Team is pushed by someone/something
Defective sprint planning
Sprint backlog not protected
Internal and external dependencies

Poor estimation technique/skills
Lack of skills complementarity

Poor story splitting
Poor Definition of Ready

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Poor Product Ownership
Lack of a shared vision

Real stakeholders not involved
Inattention to good design

Fluctuant velocity

Poor estimation
technique / skills

Lack of skill
complementarity

Poor story
splitting

Unclear
Definition of Ready

Sometimes an issue or risk,
sometimes a constraint

Analyze effort / SP
Test previous estimations

Review current SP system
Move to a different technique

Always an issueAlways an issue

Monitor sprint plannings
Ask team which is the DoR

Analyze effort / team member
Look for bottlenecks

Monitor unfinished stories

Apply splitting techniques
Adopt a SP threshold

Pair working
Knowledge sharing strategy

Don’t adapt, solve it!Don’t adapt, solve it!

Run a clarification session
Review periodically DoR

Always an issue

Don’t adapt, solve it!Match stories to skills

DIAGNOSING

CLASSIFYING

SOLVING

ADAPTING

Most frequent symptoms

Fluctuant
velocity

Over
commitment

Excessive
changes

Symptoms

Low
velocity

Superficial testing
Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Team is pushed by someone/something
Defective sprint planning
Sprint backlog not protected
Internal and external dependencies

Poor estimation technique/skills
Lack of skills complementarity

Poor story splitting
Poor Definition of Ready

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Poor Product Ownership
Lack of a shared vision

Real stakeholders not involved
Inattention to good design

Poor
quality

Poor quality of deliverables

Superficial
testing

Lack of
testing scenarios

High percentage
of juniors

Poor
Definition of Done

Analyze QA effort / SP
Monitor escaped defects

Increase test automation
Introduce QA metrics

Always an issue

Monitor sprint reviews
Ask team which is the DoD

Inspect testing practice
Examine acceptance criteria

(Given… When… Then…)
Monitor bugs by seniority

Implement code review
Implement unit testing

Adopt AC format
Include test scenarios in DoD

Don’t adapt, solve it!

Run a clarification session
Review periodically DoD

Always an issue

Don’t adapt, solve it!

Usually a constraint,
sometimes an issueAlways an issue

Don’t adapt, solve it!
Create a bug fixing squad

Accept workarounds

DIAGNOSING

CLASSIFYING

SOLVING

ADAPTING

Over
commitment

Most frequent symptoms

Fluctuant
velocity

Poor
quality

Excessive
changes

Symptoms

Low
velocity

Superficial testing
Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Team is pushed by someone/something
Defective sprint planning
Sprint backlog not protected
Internal and external dependencies

Poor estimation technique/skills
Lack of skills complementarity

Poor story splitting
Poor Definition of Ready

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Poor Product Ownership
Lack of a shared vision

Real stakeholders not involved
Inattention to good design

Team is pushed by
someone/something

Monitor communication
Discuss with informal leaders

Coach the pushing person
Coach team to commit

Always an issue

Don’t adapt, solve it!

Defective
sprint planning

Inspect planning practice
Examine task allocation

Split stories in subtasks
Introduce WIP limits in sprint

Always an issue

Don’t adapt, solve it!

Internal & external
dependencies

Monitor for waitings &
approvals (process waste)

Include dependency in DoR
Remove dependency from DoD

Usually an issue,
sometimes a constraint

Improve availability of
external resources

Sprint backlog
not protected

Monitor changes of sprint
backlog

Daily Scrum/Standup

Coach PO/stakeholders
Coach team to discipline

Always an issue

Don’t adapt, solve it!

Over commitement (constant or frequent)

DIAGNOSING

CLASSIFYING

SOLVING

ADAPTING

Excessive
changes

Most frequent symptoms

Fluctuant
velocity

Over
commitment

Poor
quality

Symptoms

Low
velocity

Superficial testing
Lack of testing scenarios
High percentage of juniors
Poor Definition of Done

Team is pushed by someone/something
Defective sprint planning
Sprint backlog not protected
Internal and external dependencies

Poor estimation technique/skills
Lack of skills complementarity

Poor story splitting
Poor Definition of Ready

Demotivated team members
Poor story writing skills

Poor team collaboration
High percentage of juniors

Poor Product Ownership
Lack of a shared vision

Real stakeholders not involved
Inattention to good design

Poor product
ownership

Inspect project backlog
Discuss with stakeholders

Coach the PO
Get support for PO

Always an issue

Don’t adapt, solve it!

Lack of a
shared vision

Inquire team members
Examine PO-team alignment

Reiterate project goals
Create project visual maps

Always an issue

Don’t adapt, solve it!

Inattention to
good design

Create a refactoring backlog
Monitor refactoring needs

Get support from architects
Create solution architecture

Always an issue

Real stakeholders
not involved

Monitor decision making
process

Get real decision makers
on board

Don’t adapt, solve it!

Excessive changes (affecting budget and time)

DIAGNOSING

CLASSIFYING

SOLVING

ADAPTING

Usually an issue,
sometimes a constraint

Implement pseudo dual track
(prototype-develop)

Project governance

VISUALIZE THE
WORK

LIMIT WORK
IN PROGRESS

IMPROVE BY
METRICS

ENABLE
FEEDBACK

TRANSPARENCY
ENGAGEMENT

ALIGNMENT
FOCUS

Coordination performance

